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An Analysis Framework Addressing the Scale and Legibility of Large Scientific Data

Sets

Abstract

Much of the previous work in the large data visualization area has solely focused on

handling the scale of the data. This task is clearly a great challenge and necessary,

but it is not sufficient. Applying standard visualization techniques to large scale data

sets often creates complicated pictures where meaningful trends are lost. A second

challenge, then, is to also provide algorithms that simplify what an analyst must

understand, using either visual or quantitative means. This challenge can be sum-

marized as improving the legibility or reducing the complexity of massive data sets.

Fully meeting both of these challenges is the work of many, many PhD dissertations.

In this dissertation, we describe some new techniques to address both the scale and

legibility challenges, in hope of contributing to the larger solution.

In addition to our assumption of simultaneously addressing both scale and

legibility, we add an additional requirement that the solutions considered fit well

within an interoperable framework for diverse algorithms, because a large suite of

algorithms is often necessary to fully understand complex data sets.

For scale, we present a general architecture for handling large data, as well as

details of a contract-based system for integrating advanced optimizations into a data

flow network design. We also describe techniques for volume rendering and performing

comparisons at the extreme scale. For legibility, we present several techniques. Most

noteworthy are equivalence class functions, a technique to drive visualizations using

statistical methods, and line-scan based techniques for characterizing shape.
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Abstract

Much of the previous work in the large data visualization area has solely focused on handling

the scale of the data. This task is clearly a great challenge and necessary, but it is not

sufficient. Applying standard visualization techniques to large scale data sets often creates

complicated pictures where meaningful trends are lost. A second challenge, then, is to

also provide algorithms that simplify what an analyst must understand, using either visual

or quantitative means. This challenge can be summarized as improving the legibility or

reducing the complexity of massive data sets. Fully meeting both of these challenges is

the work of many, many PhD dissertations. In this dissertation, we describe some new

techniques to address both the scale and legibility challenges, in hope of contributing to the

larger solution.

In addition to our assumption of simultaneously addressing both scale and leg-

ibility, we add an additional requirement that the solutions considered fit well within an

interoperable framework for diverse algorithms, because a large suite of algorithms is often

necessary to fully understand complex data sets.

For scale, we present a general architecture for handling large data, as well as

details of a contract-based system for integrating advanced optimizations into a data flow

network design. We also describe techniques for volume rendering and performing compar-

isons at the extreme scale. For legibility, we present several techniques. Most noteworthy

are equivalence class functions, a technique to drive visualizations using statistical methods,

and line-scan based techniques for characterizing shape.
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Chapter 1

Introduction

1.1 Motivation

Supercomputing, once again, is a booming industry. The field was jumpstarted

in 1995 by the Accelerated Strategic Computing Initiative (ASCI), which has gone on to

dominate the Top500 list[76] for the last ten years. But supercomputing centers commen-

surate to or exceeding ASCI have emerged. These efforts promise even larger machines and

even higher resolution simulations. Examples include the Earth Simulator Center in Japan,

which produced the “Earth Simulator” machine, the Commissariat a l’Energie Atomique

(CEA) in France, which produced the “Tera-10” machine, and the SciDAC effort (Scientific

Discovery through Advanced Computing) through the Department of Energy’s Office of

Science. With countless other large supercomputing efforts either starting or well underway,

the issues of visualizing and analyzing massive data sets has never been more important.

The sizes of the data sets being produced by these computers are staggering. A

single simulation can now operate on billions of elements and produce terabytes of data.

Petabyte scale simulations are on the near horizon. With each jump in compute power (and

corresponding jump in mesh resolution), the amount of data to comprehend also jumps. The

data already well exceeds what an analyst can explore without sophisticated techniques, and

the problem will only worsen into the future.

The purpose of post-processing tools is to enable analysts to increase their un-

derstanding of these data sets. They do this by employing a varied suite of visual and
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quantitative techniques.

Massive data sets pose two incredible challenges to post-processing tools. The first

challenge is to seamlessly handle the scale of the data. Further, the goal is not to simply

process this data, but to process this data interactively.

The second challenge is perhaps even more difficult than the first. Large scale sim-

ulations normally model extremely complex phenomena. When processing this data, stan-

dard visualization techniques often produce pictures that exceed what the human brain’s

processing system can fully comprehend. So the challenge is to improve how this informa-

tion is conveyed, with the ultimate goal being to increase data understanding. Throughout

this paper, we refer to this challenge as improving legibility at the large scale. The intent

of the phrase “legibility” is to focus on making underlying phenomena more apparent, as

opposed to connotations of filtering out noisy data.

To further illustrate these two goals, consider the following example. A recent

simulation on LLNL’s Blue Gene/L machine modeled a Rayleigh Taylor instability, where

light and heavy fluids mix. The simulation contained twenty-seven billion mesh elements

at each time slice. Details of the simulation can be found in [13]. Simply applying standard

visualization techniques to this data required an architecture that both operated in parallel

and incorporated sophisticated optimizations. Making figure 1.1 required technology to

respond to the first challenge, addressing the large scale of the data. However, the second

challenge still looms large. Consider figure 1.2. It is of a predecessor run by the same

simulation code that uses a mere one billion elements. By looking at these two pictures,

can you infer differences between the two simulations? Even if you are an expert analyst

in the field of fluid dynamics, the answer is almost certainly “no”. Although the pictures

are informative, they are complex enough to exceed the limits of what we, as humans, can

meaningly infer with our visual processing systems. So we must still provide techniques to

improve the legibility of these data sets. In this case, an important metric to characterize

this type of simulation is the measure of complexity of the mixing region between the two

fluids. This is done by calculating a boundary between the fluids (chosen as an isovalue

for some intermediate density) and then calculating the complexity as the surface area of

the boundary. A plot comparing the surface areas of the boundary is shown in figure 1.3.
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The twenty-seven billion element simulation demonstrates a substantially different mixing

behavior (seen with the bump that flattens out early in the simulation) that could never

be inferred by looking at figures 1.1 and 1.2 or even a movie of these figures animated over

time.

Figure 1.1: A rendering of a 27-billion element Rayleigh Taylor instability

1.2 Research Goals

Throughout this dissertation, we will refer to the concept of a richly featured

tool. A richly featured tool is a tool for processing general data, i.e unstructured and
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Figure 1.2: A rendering of a 1-billion element Rayleigh Taylor instability

structured meshes, scalars, vectors, tensors, etc. Richly featured tools also contain hundreds

of algorithms, many of which can be composed together to meet dynamic analysis needs.

We strongly believe that richly featured tools with interoperable feature sets are

superior to specialized applications when it comes to performing conclusive data analysis.

Interoperability enables techniques such as derived quantity generation, data manipulation,

plotting variations, and quantitative techniques to all be included in the same analysis.

This dissertation assumes a requirement that the techniques described can be

deployed inside a richly featured tool. Of course, by choosing richly featured tools as

a target, there is a key drawback. Many specialized applications are designed around

optimizing the workflow for a handful of operations. For example, a tool that does only
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Figure 1.3: Here we plot the surface area of the boundary for the twenty-seven billion
element calculation (red) and the one billion element calculation (green).

volume rendering may build its I/O, data management, communication, and rendering

algorithms around a specific volume rendering workflow. With a richly featured tool, this is

not practical because of the potential interactions between the operations. A richly featured

tool must incorporate general strategies for I/O, data management, communication, and

rendering that support all its operations.

The challenges of visualizing and analyzing large-scale data are complex. This

dissertation offers no single panacea. Instead, the principle contribution of this dissertation

is two-fold. The first is to describe an architecture that is suitable for production-level

analysis tools with rich, interoperable features sets and that is capable of incorportating

sophisticated optimizations. The second is to contribute some advanced techniques, either

in addressing scale or improving legibility, that fit within such a framework.

Chapters 2, 3, 4, and 5 all address handling the scale of large data sets. Chapter

2 gives an overview of the architecture, while chapter 3 details how to apply optimizations

in such an architecture. Chapter 4 provides an algorithm for volume rendering large data

sets efficiently within a general architecture. And chapter 5 describes how to perform

comparisons at the extreme scale.
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Chapters 6, 7, and 8 all address improving the legibility of large data sets. Chapter

6 outlines basic quantitative techniques and their utility. Chapter 7 provides a methodology

for combining statistical operators with standard visualization techniques. Finally, chapter

8 shows how line-scan based techniques can be employed for shape characterization.
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Part I

Handling the scale of large data
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Chapter 2

An Architecture for Large Scale

Data And Richly Featured Tools

In this chapter1, we propose a client-server design that parallelizes all data process-

ing. The design is very flexible and is well suited to the requirements of richly featured tools:

support for a wide array of operations, support for many data models, and straight forward

extensibility. This design has been implemented in VisIt, a visualization and analysis tool.

The general data management strategy for the parallel server can essentially be

described as a “Scatter-Gather” algorithm. The process can be characterized in three steps:

1. I/O (scatter)

2. Data Flow Networks (processing)

3. Rendering (gather)

In a traditional Scatter-Gather algorithm, the Scatter phase involves partitioning

and distributing data across processors using parallel communication. For our purposes,

the data is effectively pre-partitioned (by the simulation) before the post-processing tool

reads it. So, the data is read and distributed in chunks without any communication between

processors during the Scatter phase.

1Much of the text from this chapter comes from [19], which was a collaboration between Hank Childs
and Mark Miller
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In the following subsections, we will further describe the proposed architecture

in more depth. The purpose of this overview is to provide background to the reader,

although we comment that the I/O model is extremely flexible and tailored to the diverse

requirements placed on a general tool when it comes to reading data from a plethora of

simulation codes.

2.1 Related Work

Data flow network systems have been implemented in many systems, for example

VTK [67], OpenDX [1], and AVS [78]. The distinguishing feature of the proposed data

flow network system is the “contract” extension that enables optimizations to be applied

adaptively. This capability will be described in more detail in chapter 3.

There are many richly-featured parallel visualization tools that perform data re-

duction in parallel followed by a combined rendering stage, although these tools frequently

struggle with operating on the data in its original form, supporting collective communi-

cation, and/or incorporating advanced optimizations. Examples of these are EnSight [21],

ParaView [39], PV3 [32] and FieldView [40]. The system that is described in the rest

of this chapter is able to keep data in its original form, while also supporting collective

communication and incorporating advanced optimizations.

The data types supported by richly featured tools are varied, including unstruc-

tured, curvilinear, rectilinear, AMR, and point-based meshes, as scalar, vector, and tensor

data, spectral data (i.e. for energy groups), and material volume fractions. Support for

some of these non-standard data types is itself a research topic, including material inter-

face reconstruction algorithms from Bonnell et al. [10, 11], contouring algorithms for AMR

meshes from Weber et al. [82], and volume rendering of unstructured and curvilinear meshes

from Max et al. [46] and Ma and Crockett [44].

Our design is based upon a client/server design where the server is parallelized.

The motivations for this design are similar to those described in many papers, for example

those of Bethel et al. [9] and Ma and Camp [43] – processing data in parallel on the machine

it was generated on, while achieving interactive rendering rates. However, note that the
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visualization and analysis jobs typically receive only a small fraction of the compute power

than the simulations code receive, so the job of processing this data is more difficult. Finally,

it should be noted that the rendering paradigm outlined in subsection 3.3 is different from

that described in [9] and very different from [43], which is optimized for time-varying volume

rendering.

The proposed server can take two forms. One form is as a stand-alone process

that accesses data through the file system. The other form is as a library that is linked

into an application code. This second use case allows for real-time monitoring and poten-

tially even computational steering. Haimes’s PV3 system [31], and the SCIRun system of

Parker, Johnson, and others [35, 51] took a similar approach, but have not addressed similar

scale. Pascucci et al. [59] addressed real-time monitoring at large scale, but their solution

required separate compute power. Their solution focused on making minimal impact on the

simulation code, rather than leveraging the power of the simulation’s compute platform.

Others have taken proprietary toolkits and embedded them in a simulation environment,

for example Allen et al. [4] putting AMIRA into CACTUS, and the CUMULVS system [29]

on top of AVS.

Yu, Ma, and Welling present I/O strategies for time-varying data in a distributed

computing environment [87]. Their approach is compelling, but the overlapping of I/O and

processing creates difficulties in the setting of a richly featured tool.

2.2 I/O

Each processor of the parallel server reads a portion of the input data set. This is

the mechanism that “scatters” the data set across its server. The key question during the

I/O phase is how to assign portions of the input data set to the processors of the server.

Before this question can be answered, first consider how this data is inputted.

Data can be obtained from a simulation in one of two fundamentally different

ways. The first, most common use case is to run as a standalone application where the data

is read from secondary storage. That is, the data is read from files in a filesystem. The

second use case is to run as a library linked into a simulation code and read data directly
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from primary memory. That is, the data is read directly from the memory of a running

simulation. Note that the data may need to be re-formatted to match the server’s input

requirements leading to additional memory overhead. Nonetheless, the memory overhead

is often worth it, given the potential performance gains of bypassing the filesystem and the

advantage of reducing storage space requirements.

Next, when the server processes a portion of the data set, the input data set must

be partitioned and distributed across the server’s processors. The question becomes: what

restrictions does the input data’s layout impose on partitioning and distributing that data

for parallel processing? There are three scenarios:

1. The data is being read from file(s) and the underlying I/O infrastructure only supports

a partitioning scheme fixed by the simulation when the file(s) were created.

2. The data is being read from file(s) and the underlying I/O infrastructure supports

re-partitioning during read.

3. The data is being read from the memory of a running simulation, so the partitioning

scheme is fixed by how it is stored in the memory of the simulation.

In all cases, the simulation has already partitioned the data at least one time; this

partitioning is a one-to-one correspondence between each processor of the parallel simulation

code and the elements that that processor operates on2. The grouping of elements that

belong to a single processor is often referred to as a domain. Examples of I/O libraries that

support a partitioning scheme fixed by the simulation at the time the files are created are

Silo [63] and Exodus [66]. While it is conceivable to alter this partitioning by operating on

sub-portions of domains, there is nothing to be gained unless the underlying I/O library

supports partial I/O (Silo and Exodus do not). On the other hand, some formats permit

re-partitioning of the data when it is read. Examples are described in ViSUS [58] and

SAF [52].

So what partitioning should be used? For cases #1 and #3, in our implementation

(VisIt), we simply accept the imposed partitioning, because the costs of re-partitioning

2This statement only applies to real elements. Sometimes elements along the boundary are replicated on
other processors as ghost elements, for interpolation purposes. These ghost elements can not be described
using a one-to-one correspondence.
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that data typically exceeds the benefits. For case #2, we allow the data reader to perform

the partitioning, as the reader often has more domain knowledge about what types of

partitionings are appropriate.

We will refer to a “chunk” as a group of elements that are processed all at once.

Note that if the partitioning of the data is fixed based on domain decomposition, then

chunks correspond directly to domains. Furthermore, visualization tools often get many

less processors to work with than the simulation codes, so, in this case, there will likely be

more chunks than there are processors on the server. So the server must support chunk

overloading, where each processor of the server operates on multiple chunks. Note that

an alternate strategy would be to combine all of the chunks on one processor into “super-

chunks”. This strategy often breaks down in the context of a richly featured tool. For

example, there is often no way to combine chunks that are rectilinear in nature into one

“super-chunk” that is also rectilinear.

Regardless of the form of the input, the data readers must be able identify chunks

and read those chunks for further processing. When the input data is read from the memory

of a simulation, the chunk is simply the elements that the simulation has on that processor.

When the data is read from a file with a fixed partitioning, we must do chunk overloading

with the existing domains defined by the file. And when the input data is read from a file

that supports repartitioning, the data reader can be made smart enough to dynamically

decompose the data so that each processor has an approximately equal-work chunk.

2.3 Data Flow Networks

Our goal was to build a system with many interoperable features, so it was an

obvious choice to use data flow networks ([1, 67, 78]). Again, we extended the basic data

flow network concept with a contract design. This will be discussed further in chapter 3.

Further, we note that many of the modules in VisIt’s data flow network implementation

perform common visualization operations using a third party library (VTK [67]).

When the client asks the server to perform a calculation, each processor of the

server sets up an identical data flow network. They only differ in the list of chunks from
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the data set that they process. The majority of visualization operations are “embarrass-

ingly parallel” – the processing can occur in parallel with no communication. For these

operations the only concern is artifacts which can occur along the boundaries of a chunk.

These artifacts are typically addressed through the use of ghost data. A small portion of

visualization operations, however, are not embarrassingly parallel and do require collective

communication between the processors. Both classes of algorithms are supported and ghost

data is supported as well. Further description of these concepts can be found in 3.4.2 and

3.4.3, respectively.

2.4 Rendering

When rendering surfaces, we use an adaptive rendering strategy based on the size

of a surface to be rendered. If the surface to be rendered contains a small number of

geometric primitives, then the server will send that surface to the client to be rendered

locally using graphics hardware. However, this approach is inherently non-scalable. So an

alternate, backup strategy is needed for large surfaces. In VisIt, the strategy is a parallel

rendering mode that will accommodate surfaces made up of large numbers of geometric

primitives. It has a user-definable heuristic for how large a surface can be before it thinks it

will overwhelm the client. Alternatively, users can explicitly choose which rendering mode

they would like to use.

Many papers describe techniques for rendering in parallel. See [53] and [55] for

examples. The parallel rendering algorithms described here are not new. However, they are

versatile and integrate seamlessly the client/server architecture. We describe them here for

completeness.

In parallel, each processor’s data flow network produces a portion of the data set

to be rendered. Each processor then renders its portion of the data independently, either

by using graphics cards (if available), or by using Mesa [60], a software implementation of

the OpenGL interface. No attempt is made to re-distribute the data in image space. So,

each processor’s output image is equal in size to the intended final image and consists of

both color and depth values. The individual images are composited in parallel to produce
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the final image (see figure 2.1).

Figure 2.1: Scalable rendering is achieved by having each processor render its own portion
of the larger data set and then composite using the z-buffer.

Accommodations are made for renderings including semi-transparent surfaces or

volumes. In this case, rendering is performed in multiple passes. Opaque geometry, if

any, is rendered and composited in the first pass to provide a background image for subse-

quent passes. During the next pass, data is re-distributed as appropriate for the particular

rendering technique (semi-transparent geometry or ray-cast volume rendering3) and com-

bined with the background image from the first pass (which includes depth information).

If shadows are desired, another rendering pass is made for shadow maps [84].

After rendering is completed, the image is compressed and shipped to the client.

When multiple parallel servers are used, each server ships color and depth values to the

client and a final compositing step is performed there. Otherwise, only color values are

shipped to the client.

3Note that either of these techniques alone can be solved with an additional rendering pass, but performing
both in rendering is substantially harder. Here, we refer to the situation where it is one or the other.
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Chapter 3

Enabling Advanced Techniques for

Large Data

The architecture presented in chapter 2 targets a richly featured tools with inter-

operable features. That architecture results lends itself to a “brute force” approach, where

data is processed naively. In this chapter1, we will discuss how a simple and elegant exten-

sion to the data flow network design, contracts, can allow sophisticated optimizations to be

adaptively employed in the context of chapter 2’s architecture. The result is an architecture

that is both general and efficient. Contracts enable each component of the data flow net-

work to modify the set of optimizations used. In addition, they allow for new components

to be accommodated gracefully within a data flow network system.

3.1 Related Work

The concept of reading in only portions of a larger data set (see 3.4.1) has been

well discussed, for example by Chiang, et al. [16] and Pascucci, et al. [58]. The concepts

described in this chapter are how to incorporate optimizations such as these within a richly

featured tool.

The execution model discussed in 3.4.2, streaming, maps well to out-of-core pro-

1Much of the text from this chapter comes from [17], which was a collaboration between Hank Childs,
Eric Brugger, Kathleen Bonnell, Jeremy Meredith, Mark Miller, Brad Whitlock, and Nelson Max
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cessing. Many out-of-core algorithms are summarized by Silva et al. in [71]. In addition,

Ahrens et al. [3] give an overview of a parallel streaming architecture. In this chapter,

the discussion will address when streaming is a viable technique and how the contract-

based system enables automatic selection of the best execution model for a given data flow

network.

Ghost elements are often created by the simulation code and stored with the rest of

the data. The advantages of utilizing ghost elements to avoid artifacts at domain boundaries

(see 3.4.3) were discussed in [3]. In this chapter, we propose that the post-processing tool

be used to generate ghost data when ghost data is not available in the input data. Further,

we discuss the factors that require when and what type of ghost data should be generated,

as well as a system that can incorporate these factors (i.e. contracts).

3.2 Integrating Contracts with Data Flow Networks

Contracts extend the basic data flow network design [78] [1] [67]. Before discussing

contracts, let’s review the basics of data flow networks. Their base types are data objects

and components (sometimes called process objects). The components can be filters, sources,

or sinks. Filters have an input and an output, both of which are data objects. Sources have

only data object outputs and sinks have only data object inputs. A pipeline is a collection

of components. It has a source (typically a file reader) followed by many filters followed

by a sink (typically a rendering algorithm). Pipeline execution, in this context, will be

demand driven, meaning that data flow starts with a pull operation. This begins at the

sink, which generates an update request that propagates up the pipeline through the filters,

ultimately going to a load balancer (needed to divide the work on the server) and then to

the source. The source generates the requested data which becomes input to the first filter.

Then execute phases propagate down the pipeline. Each component takes the data arriving

at its input, performs some operation and creates new data at its output until the sink is

reached.

All of the above description is typical of data flow networks. The primary exten-

sions proposed (and implemented inside the VisIt system) that enables large data optimiza-
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tions is the contract. The contract travels up the pipeline along with the pull request (see

figure 3.1).

Figure 3.1: An example pipeline. During
the update phase (denoted by thin arrows),
Contract Version 0 (V0), comes from the
sink. V0 is then an input to the contour
filter, which modifies the contract to make
Contract Version 1 (V1). This continues up
the pipeline, until an executive that contains
a load balancer (denoted by LB) is reached.
This executive decides the details of the exe-
cution phase and passes those details to the
source, which begins the execute phase (de-
noted by thick arrows).

The scale of the data sets considered for this dissertation mandates that opti-

mizations are incorporated into every pipeline execution. These optimizations vary from

minimizing the data read from disk, to the treatment of that data, to the way that data

moves through a pipeline. The set of applicable optimizations is dependent on the prop-

erties of the pipeline components. This requires a dynamic system that determines which

optimizations can be applied. Further, good software engineering practices mandate con-

sideration for the ease of adding new components. So this system must be able to handle

their addition without modification. These requirements lead to our final strategy: all of a

pipeline’s components modify a contract and optimizations are adaptively employed based

on the specifications of this contract.

The heart of the contract-based system is an interface that allows pipeline compo-

nents to communicate with other filters and describe their impact on a pipeline. Focusing

on the more abstract notion of impact rather than the specifics of individual components

allows for a highly extensible architecture, because new components simply must be able to

describe what impacts they will have. This abstraction also allows for effective management

of the large number of existing components.

Because the contract is coupled with update requests, the information in the con-

tract travels from the bottom of the pipeline to the top. When visiting each component

in the pipeline, the contract informs that component of the downstream components’ re-



18

quirements, as well as being able to guarantee that the components upstream will receive

the current component’s requirements. Further, the contract-based system enables all com-

ponents to participate in the process of adaptively selecting and employing appropriate

optimizations. Finally, combining the contract with update requests allows for seamless

integration into a large system.

3.3 Description of Input Data With Respect to Optimiza-

tions

As previously described, the data sets we are considering by VisIt come from

parallelized simulation codes. In order to run in parallel, these codes decompose their data

into pieces, called domains. The domain decomposition is chosen so that the total surface

area of the boundaries between domains is minimized, and there is typically one domain for

each processor. Again, when these codes write their data to disk, it is typically written in

its domain decomposed form. Reading in one domain from these files is usually an atomic

operation; the data is laid out such that either it is not possible or it is not advantageous

to read in a portion of the domain.

Some data sets provide meta-data, allowing the visualization tool to speed up their

processing. Here, meta-data means data about the data set that is much smaller in size

than the whole data set. Examples of meta-data are spatial extents for each domain of the

simulation or variable extents for each domain for a specific variable of the simulation.

3.4 Optimizations

In the following sections, some of example optimizations will be described. The

potential application of these optimizations is dependent on the properties of a pipeline’s

components. A contract-based system is necessary to facilitate these optimizations being

applied adaptively.

After the optimizations are described, the contract-based system will be presented

in more detail.
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3.4.1 Reading the Optimal Subset of Data

I/O is the most expensive portion of a pipeline execution for almost every operation

a visualization tool performs. But the amount of time spent in I/O can be minimized by

reading only the domains that are relevant to any given pipeline. This performance gain

propagates through the pipeline, since the domains not read in do not have to be processed

downstream.

Figure 3.2: Shown is a 36 domain data set. The domains have thick black lines and are
colored red or green. Mesh lines for the elements are also shown. To create the data set
sliced by the transparent grey plane, only the red domains need to be processed. The green
domains can be eliminated before ever being read in.

Consider the example of slicing a three-dimensional data set by a plane (see figure

3.2). Many of the domains will not intersect the plane and reading them in will be wasted

effort. In fact, if D is the total number of domains, then the number of domains intersected

by the slice is typically O(D2/3).

With the presence of meta-data, it is possible to eliminate domains from processing

before ever reading them. For example, if the slice filter had access to the spatial extents



20

for each domain, it could calculate the list of domains whose bounding boxes intersects the

slice and only process that list (note that false positives can potentially be generated by

considering only the bounding box).

The contract methodology enables this. During the update phase, every filter

is given an opportunity to modify the contract, which contains the list of domains to be

processed. A filter can check to see if some piece of meta-data is available (for example,

spatial extents), and, if so, cross-reference the list of domains to be processed with the

meta-data. The modified contract will then contain only those domains indicated by the

filter.

It is important to note that every filter in the pipeline has a chance to modify the

contract. If a pipeline had a slice filter and a contour filter (to generate isolines), the slice

filter could use a spatial extents meta-data object to get exactly the set of domains that

intersected the slice, while the contour filter could use a data extents meta-data object to

get exactly the set of domains that could possibly produce contours. The resulting contract

would contain the intersection of their two domain lists.

Further, since the infrastructure for subsetting the data is encapsulated in the

contract, new, unforeseen filters can leverage this optimization. For example, a newly

added spherical-slice filter can be added afterwards and it can also make use of the spatial

extents meta-data, or a new filter that thresholds the data to produce only the elements

that meet a certain criteria (elements with density between 2 g/cc and 5 g/cc, for example)

can use the data extents meta-data. Also, the types of meta-data that fit within a contract

scheme are not limited to spatial and data extents. There is an abstract meta-data type,

and new, concrete types of meta-data can take any form.

3.4.2 Execution Model

For domain-decomposed data sets, our strategy is to leverage the domain decom-

position of the simulation for our own parallelization model. The number of processors

the parallel server is run on is typically much less than the number of domains the sim-

ulation code produced. So we must support domain overloading, where multiple domains

are processed on each processor of the server. Note that it is generally not sufficient to
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simply combine unrelated domains into one larger domain. This is not even possible for

some grid types, like rectilinear grids where two grids are likely not neighboring and cannot

be combined. And for situations where grids can be combined, as with unstructured grids,

additional overhead would be incurred to distinguish which domains the elements in the

combined grid originated from, which is important for operations where users want to refer

to their elements in their original form (for example, picking elements).

We have considered two techniques to do domain overloading. One approach,

called streaming, processes domains one at a time. In this approach, there is one pipeline

execution for each domain. Another approach, called grouping, executes the pipeline only

once and has each component process all of the domains before proceeding to the next one.

A related issue to domain overloading is that of load balancing. With static load

balancing, domains are assigned to the processors at the beginning of the pipeline execution

and a grouping strategy is applied. Because all of the data is available at every stage of

the pipeline, collective communication can take place, enabling algorithms that cannot be

efficiently implemented in an out-of-core setting. With dynamic load balancing, domains

are assigned dynamically and a streaming strategy is applied. Not all domains take the

same amount of time to process; dynamic load balancing efficiently (and dynamically)

schedules these domains, creating an evenly distributed load. In addition, this strategy

will process one domain in entirety before moving on to the next one, increasing cache

coherency. However, because the data streams through the pipeline, it is not all available

at one time. This makes some parallel algorithms which require all of the data to be in

memory at one time impossible to implement. Algorithms of this form typically utilize

collective communication, where data from one chunk is needed to perform calculations on

another chunk, possibly many, many times, like with parallel streamline generation.

So which load balancing method should be used? Dynamic load balancing is more

efficient when the amount of work per domain varies greatly, but the technique does not

support all algorithms. Static load balancing is usually less efficient, but does support all

algorithms. The best solution is to use dynamic load balancing when possible, but fall

back on static load balancing when an algorithm can not be implemented in a streaming

setting. A contract-based system is again used to solve this problem. When each pipeline
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component gets the opportunity to modify the contract, it can specify whether or not it

will use collective communication. When the load balancer executes, it will consult the

contract and then use that information to adaptively choose between dynamic and static

load balancing.

Note that the load balancing described in this section refers to the processing of

data. This processing can be varied, for example generating a surface to be rendered, or

subselecting a region and then performing a query on it, such as integrating some quantity.

In the case of generating a surface to be rendered, there is additional load balancing that

will improve rendering speed. When the actual rendering occurs, it is often lucrative to

perform a re-balancing of the surface so that each processor contains approximately the

same number of primitives. This form of load balancing is distinct from what is considered

in this section.

3.4.3 Generation of Ghost Data

Up until this point, we have described an approach where data flow networks

operate on chunks of a larger data set. On the whole, this is an excellent (and scalable)

approach. However, we have not considered the problems that can arise from that. The

biggest problem occurs along the exterior layer of elements for each chunk. In the following

paragraphs, we will describe different types of artifacts that can occur and how they can

be overcome.

One common operation is to remove a portion of a data set (for example, clipping

a wedge out of a sphere) and then look at only the external faces of what remains. This

can be done by finding the external faces of each of the data set’s domains. But faces that

are external to a domain can be internal to the whole data set. These extra faces can have

multiple negative impacts. One impact is that the number of triangles being drawn can go

up by an order of magnitude. Another impact occurs when the external faces are rendered

transparently. Then the extra faces are visible and result in an incorrect image (see figure

3.3).

Now consider the case where interpolation is needed to perform a visualization

operation. For example, consider the case where a contour is to be calculated on a data
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Figure 3.3: On the left is an opaque picture of the data set. In the middle, the opacity has
been lowered. Faces external to a domain (yet internal to the data set) are being rendered.
On the right, these faces have been removed. There are 902,134 triangles for the middle
surface and only 277,796 for the right surface.

set that has an element-centered scalar quantity defined on it. Since contouring is typically

done with an algorithm that requires node-centered data, the first step of this process is

to interpolate the data to be a node-centered quantity from an element-centered quantity.

Along the domain boundaries, the interpolation will be incorrect, because the elements

from neighboring domains are not available. Ultimately, this will lead to a cracked contour

surface (see figure 3.4).

Figure 3.4: On the left is a contour plot of an element-centered quantity where ghost
elements were not generated. Cracks in the contour surface occur along domain boundaries.
On the right, ghost elements were generated and the correct picture was generated.

Both of the above problems require ghost data. For the first case, it is sufficient to

mark the exterior faces of a domain that are internal to the whole data set as ghost faces.
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Then these ghost faces can be discarded when an external face list is generated. The second

case requires a redundant layer of ghost elements around the exterior of each domain. This

allows interpolation to be done correctly.

Generation of ghost data is typically possible given some description of the input

data set. This input can take several forms. One form can be a description of how the

domain boundaries of structured meshes overlap (”faces I=0-5, J=0, K=8-12 of domain

5 are the same as faces I=12-17, J=17, K=10-14 of domain 12”). Another form utilizes

global node identifiers assigned by the simulation code for each node in the problem. The

visualization tool can then use these identifiers to determine which nodes are duplicated

on multiple domains and thus identify shared boundaries between domains, which is the

key step for creating ghost data. A third form uses the spatial coordinates of each node as

a surrogate for global node identifiers. For each of these forms, the salient issue is that a

module can be written that can create ghost faces or ghost elements. The details of such a

module are not important to this dissertation.

There are costs associated with ghost data. Routines to generate ghost elements

are typically implemented with collective communication, which precludes dynamic load

balancing. In addition, ghost elements require duplicate copies of some cells in the data set

(see figure 3.5), increasing memory costs. Ghost faces are less costly, but still require arrays

of problem size data to track which faces are ghost and which are not. To this end, it is

important to determine the exact type of ghost data needed, if any.

Figure 3.5: On the left is a domain without ghost elements. On the right is the same
domain with ghost elements added (drawn in yellow). VisIt combines the ghost elements
with the domain’s real elements into one large domain for efficiency purposes for the filters
downstream as well as simplicity of coding.

A contract-based system allows the minimum calculation to be performed. If a
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filter, such as the contour filter, needs to do interpolation, it will mark the contract with

this information in the update phase. As a result, ghost elements will be created at the top

of the pipeline, allowing correct interpolation to occur. If the filter believes it will have to

calculate external face lists, the case with the external face list filter, then it will mark the

contract with this information in the update phase, and ghost faces will be created. Most

importantly, in cases that do not require ghost data, such as the case when a data set is

being sliced or volume rendered no ghost data will be created2.

3.4.4 Subgrid Generation

Before discussing subgrid generation, first consider “clip” and “threshold” filters.

Clipping allows a user to remove portions of a data set based on standard geometric primi-

tives, such as planes or spheres. Thresholding allows the user to generate a data set where

every element meets a certain criteria – the elements where density is greater than 2 g/cc

and the temperature is between six hundred and eight hundred degrees Celsius. Both of

these filters produce unstructured grid outputs even if the input grid is structured.

Our experience has been that most simulations with the largest number of elements

are performed on rectilinear grids. Rectilinear grids have an implicit representation that

minimizes the memory footprint of a data set. Many filters, such as clip and threshold,

take in rectilinear grid inputs and create unstructured grid outputs. One issue with the

unstructured grid outputs is that many components have optimized routines for dealing

with rectilinear grids. A bigger issue is that of memory footprint. The representation of

an unstructured grid is explicit, and the additional memory required to store them can be

more than what is available on the machine.

To further motivate this problem, consider the following example of a ten billion

element rectilinear grid with a scalar, floating-point precision variable. The variable will

occupy forty gigabytes (40GB) of memory. The representation of the grid itself takes only

a few thousand bytes. But representing the same data set as an unstructured grid is much

more costly. Again, the scalar variable will take forty gigabytes. Each element of the grid

2Ghost data is clearly not required for cell-centered data in these cases. For node-centered data, the data
at the boundaries of a chunk is often repeated and additional ghost data is not necessary in this case as well.
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will now take eight integers to store the indices of the element’s points in a point list, and

each point in the point list will now take three floating-point precision numbers, leading

the total memory footprint to be approximately four hundred eighty gigabytes (480GB).

Of course, some operations dramatically reduce the total element count – a threshold filter

applied to a ten billion element rectilinear grid may result in an unstructured grid consisting

of just a few elements. In this case, the storage cost for an unstructured grid representation

of the filter’s output is insignificant when compared to the storage cost of the filter’s input.

However, the opposite can also happen: a threshold filter might remove only a few elements,

creating an unstructured grid that is too large to store in memory.

One way to address this problem is to identify complete rectilinear grids in the

filter’s output. These grids are then separated from the remainder of the output and remain

as rectilinear grids. Accompanying this grid is one unstructured grid that contains all of the

elements that could not be placed in the output rectilinear grids. Of course, proper ghost

data is put in place to prevent artificial boundary artifacts from appearing (which type of

ghost data is created is determined in the same way as described in 3.4.3). This process is

referred to as subgrid generation (see figure 3.6).

We rejected the alternative approach of keeping the grid in its complete form and

adding a bit to each cell stating wither or not it survived. This approach does not lend

itself to algorithms where cells are divided into tetrahedra (such as clipping). Worse, the

approach would create new API requirements on the other filters to be aware of this new

bit array and incorporate it into their processing.

There are many different configurations where rectilinear grids can be overlaid onto

the ”surviving elements” in the unstructured grid. The best configuration would maximize

the number of elements covered by the rectilinear grids and minimize the total number

of rectilinear grids. These are often opposing goals. Each element could be covered by

simply devoting its own rectilinear grid to it. Since each grid has overhead, that would

actually have a higher memory footprint than storing them in the original unstructured

grid, defeating the purpose.

Although our two goals are opposing, we are typically more interested in one

goal than another. For example, if we are trying to volume render the data set, then the
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Figure 3.6: On the left, there is rectilinear grid with portions removed. In the middle, we
see a covering with a large minimum grid size, which results in four grids. On the right, we
see a covering with a smaller minimum grid size, which results in nine grids. The elements
not covered in the output grids are placed in an unstructured grid.

performance of the algorithm is far superior on rectilinear grids than on unstructured grids.

In this case, we would want to make sure the maximum number of elements was covered

by the rectilinear grids. But the performance of many operations is indifferent to grid type,

making memory footprint the only advantage for those operations.

A contract-based system can guide the placement of the rectilinear grids. Each

component can modify the contract to say which goal it values - solely minimizing memory

footprint versus keeping as many elements as possible in a native rectilinear representation

for further processing.

As previously mentioned, some complete rectilinear grids contain so few elements

that leaving them in an implicit form does not provide a favorable memory tradeoff, because

there is overhead associated with each rectilinear grid. As such, we use a minimum grid size

of 2048 elements when overlaying complete rectilinear grids on the output. However, if the

contract reports that filters down stream can take advantage of rectilinear representations,

then the minimum grid size drops to 256 elements. Performance results for differing grid

sizes can be found in 3.6.4.

3.5 Description of Contract

The contract is simply a data structure. An initial version is created at the sink

with all default values. As each component of the pipeline is visited during the update
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phase, it can modify the contract by changing members of this data structure. Table 3.1

contains a description of the members of the contract referenced in the previous sections.

Name Type Default Value

ghostType enum {None None
Face, Element}

optimizedFor- bool false
Rectilinear

canDoDynamic bool true

domains vector<bool> all true

Table 3.1: The members of the contract data structure described in previous sections.

For our implementation in VisIt, each filter inherits from a base class, called avt-

Filter. This class has a virtual function that allows the filter to modify the contract. Below

is pseudocode for how to modify a contract.

void avtXYZFilter::ModifyContact(avtContract *c)

{

c->SetCanDoDynamic(false);

c->SetGhostType(Element);

}

The contract allows for each component to describe the impact it will have on the

total pipeline execution in a general way that does not require knowledge of the component

itself. By enumerating the impacts that components can have on a pipeline, it is easy to

extend this system with new components. In addition, by using inheritance, the burden to

implement a new component and utilize the contract-based system is very low.

The ghostType data member is set to None by default, because ghost data should

not be generated when it is not required. The contour filter modifies the contract to have

Element when it is going to contour element-based data, whereas the external face list filter

modifies the contract to have Face. It should be noted that all of the components that

modify this field do not blindly assign their desired value to it. If the face list filter were to
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overwrite a value of Element with its desired Face, then the filters downstream would not

get the ghost data it needs. In this case, there is an ordering between the types. If Element

was requested, then it should be obtained, regardless of requests for Face data. Similarly,

Face data should be obtained even if other filters need None. And those that request None

should gracefully accept and pass through ghost data. Furthermore, those that request

Face data should be able to accept and deal gracefully with Element data in its place. The

external face list filter, then, is able to accommodate Element data, even when it simply

needs Face data. Although it would be possible to eliminate this complexity (by having

separate entries in the contract for ghost faces and ghost elements), the field is maintained

as one entry because it is more efficient to only calculate one set of ghost data.

optimizedForRectilinear is set to false by default, since only certain filters are

specialized for operating on rectilinear grids. If the field is false, then the grids are placed

to minimize memory footprint, rather than maximizing the number of elements covered

by the rectilinear grids. canDoDynamic is set to true because it assumed that most filters

do not require collective communication. If they do require collective communication, it is

their responsibility to set that canDoDynamic to false when it has a chance to modify the

contract in the update phase. Finally all of the domains are assumed to be used at the

beginning of the update. If filters are able to access meta-data and determine that some

domains will not affect the final picture, then they may modify the Boolean values for those

domains.

3.6 Results

The contract-based system described in this chapter has been fully implemented

and we now discuss its results. The purpose of discussing the results is to demonstrate

the benefit of the example optimizations discussed. We believe that this motivates the

importance of using these optimizations and, by extension, motivates the importance of

a contract-based system that enables these specialized optimizations to be adaptively em-

ployed.

We will present results in the context of a Rayleigh-Taylor Instability simulation,
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which models fluid instability between heavy fluid and light fluid. The simulation was

performed on a 1152x1152x1152 rectilinear grid, for a total of more than one and a half

billion elements. The data was decomposed into 729 domains, with each domain containing

more than two million elements.

All timings were taken on Lawrence Livermore National Laboratory’s Thunder

machine, which was ranked seventh on the Top 500 list released in June 2005. The machine

is comprised of 4096 1.4GHz Intel Itanium2 processors, each with access to two gigabytes of

memory. The machine is divided into 1024 nodes, where each node contains four processors.

The processor’s memory can only be shared with other processors in its node.

Pictures of the operations described below are located at the end of this chapter.

3.6.1 Reading the Optimal Subset of Data

We will present two algorithms where the optimal subset of data was read – slic-

ing, which makes use of spatial meta-data, and contouring, which makes use of variable

meta-data. It should be noted that use of spatial meta-data typically yields a consistent

performance improvement, but performance improvement from variable meta-data can be

highly problem specific. To illustrate this, results from early in the simulation and late in

the simulation are shown (see table 3.2). The processing time includes the time to read in

a data set from disk, perform operations to it, and prepare it for rendering. Rendering was

not included because it can be highly dependent on screen size.

Processing time (sec)

Algorithm Processors Without With
Meta-data Meta-data

Slicing 32 25.3 3.2

Contouring 32 41.1 5.8
(early)

Contouring 32 185.0 97.2
(late)

Table 3.2: Measuring effectiveness of reading the optimal subset of data
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3.6.2 Comparison of Execution Models

Since not all pipelines can successfully execute with dynamic load balancing, we

can only compare execution time for those pipelines that can use dynamic load balancing.

Again using the Rayleigh-Taylor Instability simulation, we study the performance of slicing,

contouring, thresholding, and clipping. Note that other optimizations were used in this

study – slicing and contouring were using spatial and variable meta-data respectively, while

thresholding and clipping used subgrid generation for its outputs (see table 3.3). Again,

the processing time includes the time to read in a data set from disk, perform operations

to it, and prepare it for rendering.

Processing time (sec)

Algorithm Processors Static LB Dynamic LB

Slicing 32 3.2 4.0

Contouring 32 97.2 65.1

Thresholding 64 181.3 64.1

Clipping 64 59.0 30.7

Table 3.3: Measuring performance differences between static and dynamic load balancing

Slicing did not receive large performance improvements from dynamic load bal-

ancing, because our use of spatial meta-data eliminated those domains not intersecting the

slice, and the amount of work performed per processor was relatively even. We believe that

the higher dynamic load balancing time is due to the overhead in multiple pipeline execu-

tions. Contouring, thresholding, and clipping, on the other hand, did receive substantial

speedups, since the time to execute each of these algorithms was highly dependent on its

input domains.

3.6.3 Generation of Ghost Data

This optimization is not a performance optimization; it is necessary to create the

correct picture. Hence, no performance comparisons are presented here. Refer back to

figures 3.3 and 3.4 in Section 3.4.3 to see the results.
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3.6.4 Subgrid Generation

The volume renderer for this study will be described in more detail in chapter 4. We

will now give a brief description of the algorithm to understand how contracts benefit such

an algorithm. The volume renderer processes data in three phases. The first phase samples

the data along rays. The input data can be heterogeneous, made up of both rectilinear and

unstructured grids. The rectilinear grids are sampled quickly using specialized algorithms,

while the unstructured grids will be sampled slowly using generalized algorithms. The

sampling done on each processor uses the data assigned to that processor by the load

balancer. Once the sampling has been completed, the second phase, a communication

phase, begins. During this phase, samples are re-distributed among processors, to prepare

for the third phase, a compositing phase. The compositing is done on a per-pixel basis.

Each processor is responsible for compositing some portion of the screen, and the second

communication phase brings the samples necessary to perform this operation.

The volume renderer uses the contract to indicate that it has rectilinear optimiza-

tions. This will cause the subgrid generation module to create more rectilinear grids, many

of them smaller in size than what is typically generated. This then allows the sampling

phase to use the specialized, efficient algorithms and finish much more quickly.

In the results below, we list the time to create one volume rendered image (see

figures 3.12 and 3.13). Before volume rendering, we have clipped the data set or thresholded

the data set and used subgrid generation to create the output. Table 3.4 measures the

effectiveness of allowing for control of the minimum grid size (2048 versus 256) with subgrid

generation. When subgrid generation was not used, only unstructured grids were created,

and these algorithms exhausted available memory, leading to failure with this number of

processors.

It should be noted that the rendering time is dominated by sampling the unstruc-

tured grids. This data set can be volume rendered in 0.25 seconds when no operations (such

as clipping or thresholding) are applied to it.

The thresholded volume rendering produces only marginal gains, since the fluids

have become so mixed that even rectilinear grids as small as 256 elements cannot be placed
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Subgrid Generation
No Yes

Minimum Grid Size
Algorithm Processors 2048 256

Clip 64 Out Of 12.0s 9.0s
Memory

Thresholding 64 Out Of 11.4s 10.8s
Memory

Table 3.4: Measuring effectiveness of grid size control with subgrid generation

over much of the mixing region.

3.7 Summary

The scale of data considered for this dissertation requires that as many optimiza-

tions as possible be included in each pipeline execution. Yet, in the real world, large number

of components, including the addition of new plugin components, makes it difficult to de-

termine which optimizations can be applied. A contract-based system solves this problem,

allowing all possible optimizations to be applied to each pipeline execution. The contract

is a data structure that extends the standard data flow network design. It provides a pre-

scribed interface that every pipeline component can modify. Furthermore, the system is

extensible, allowing for further optimizations to be added and supported by the contract

system.
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Figure 3.7: This is a slice of the simulation at late time. Light fluid is colored blue, heavy
fluid is colored red.

Figure 3.8: A contour at early simulation time. This contour separates the light and dense
fluids.
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Figure 3.9: A contour at late simulation time. This contour separates the light and dense
fluids.

Figure 3.10: Pictured here is the simulation with one portion clipped away. Light fluid is
colored blue, heavy fluid is colored red.
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Figure 3.11: Pictured here is the simulation with the light fluid removed using the threshold
operation.

Figure 3.12: Pictured here is a volume rendering of the simulation after being clipped by a
plane.
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Figure 3.13: This is a volume rendering of the simulation after thresholding by a distance
variable to remove elements outside a cylinder.
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Chapter 4

A Scalable, Hybrid Scheme for

Volume Rendering Massive Data

Sets

The architecture presented in the previous two chapters is well suited for algo-

rithms where the data can be processed in sub-pieces and the results of that processing can

be trivially combined. Examples of such algorithms include contouring and slicing. Volume

rendering, on the other hand, when implemented in a parallel setting, requires great care

to be taken when dividing work among processors and thus achieve good parallel efficiency.

In this chapter1, we describe a parallel, distributed memory algorithm for volume

rendering massive data sets. The algorithm’s scalability has been demonstrated up to 400

processors, rendering one hundred million unstructured elements in under one second. The

heart of the algorithm is a hybrid approach that parallelizes over both the elements of

the input data and over the pixels of the output image. At each stage of the algorithm,

there are strong limits on how much work each processor performs, ensuring good parallel

efficiency. The algorithm is sample-based. We present two techniques for calculating the

sample points: a 3D rasterization technique and a kernel-based technique, which trade off

between speed and generality. Finally, the algorithm is very flexible. It can be deployed in

1Much of the text from this chapter comes from [18], which was a collaboration between Hank Childs,
Mark Duchaineau, and Kwan-Liu Ma
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general purpose visualization tools and can also support diverse mesh types, ranging from

structured grids to curvilinear and unstructured meshes to point clouds.

4.1 Introduction

The power and capacity of parallel supercomputers are growing at a fast pace,

enhancing scientists’ ability to simulate and study complex physical phenomena at increas-

ingly greater accuracy. This added accuracy often is the key to advances in their studies.

Their 3D simulations can generate large volume data sets, which are best visualized using

direct volume rendering. Volume rendering is particularly effective in displaying complex

3D structures and features at varying scales. Real-time volume rendering has become fea-

sible with commodity graphics hardware, but it requires the data to fit in video memory.

Because the size of the data sets generated by these simulations are currently in the teras-

cale regime, and will soon reach petascale, we must seek a distributed-memory, parallel

rendering solution.

We have developed a new, massively parallel, distributed-memory, volume ren-

dering algorithm. It is designed to run on the same parallel supercomputers used to run

terascale/petascale simulations. It has demonstrated excellent scalability and been used on

some of the largest simulations ever performed. The algorithm can be applied to many di-

verse types of meshes, ranging from structured grids to curvilinear and unstructured meshes

to point clouds. It is implemented inside of VisIt [17], a richly featured visualization and

data analysis application focusing on large data sets. Throughout the development of this

algorithm, a major goal was to develop a technique that would seamlessly integrate into

a general-purpose visualization tool. This required us to avoid schemes that place special

requirements on I/O, communication, available hardware, etc.

In a distributed memory environment, adaptive techniques for dividing work among

the processors are not possible due to data ownership issues. In this environment, data must

be partitioned among the processors and each processor is responsible for calculating its

portion of the picture. Of course, load balancing issues can occur, especially with irregular

data or when camera placement focuses on a small sub-region of the volume. This requires
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us to develop data partitioning strategies that ensure even workloads on each processor. The

quality of these strategies dictate the degree of scalability we can achieve at high processor

counts.

We employ a multi-phase approach for distributing work. This technique is a

hybrid of previous techniques and allows us to incorporate their best aspects with respect

to balanced processing. During each phase of our algorithm, our data organization naturally

enforces hard limits on how much work each processor can do. This creates excellent load

balancing which in turn creates excellent scalability.

In this chapter, we present the details of our algorithm, a scaling study, and

some applications. Our algorithm is sample-based, which requires us to implement custom

sampling techniques. We present a 3D rasterization technique and a kernel-based technique,

which trade off between speed and quality, respectively. The scaling study shows linear

scalability of our algorithm up to four hundred processors. In addition, we present the

performance of this algorithm for diverse mesh types: a one billion-particle point cloud

simulation, a 27 billion-element rectilinear mesh simulation, and a one hundred-forty million

element unstructured mesh simulation.

4.2 Related Work

Among the parallel rendering algorithms specifically designed for visualizing irregular-

grid volume data, the most relevant example for this work is the sort-last cell-projection al-

gorithm introduced by Ma and Crockett [44]. This distributed-memory algorithm achieves

high performance by completely overlapping rendering and compositing, and by keeping

sorting costs to a minimum. However, its high scalability partially relies on manual set-

ting of communication parameters. The other class of algorithms, those that require a

view-dependent sorting step, are not feasible when rendering terascale and petascale data

sets.

Wang, Gao and Shen [80] use a multi-resolution wavelet tree to allow parallel

volume rendering of large data in an error-guided fashion. In contrast, our goal is to render

the data at its highest possible resolution.
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There is a growing interest in parallel GPU-based volume rendering [41, 75, 15].

Nevertheless, a PC cluster that is capable of rendering irregular-grid data sets at the scale we

are faced would be prohibitively expensive to build. Our algorithm is designed to harness the

power of parallel supercomputers. Another option is to utilize geographically distributed

computing resources, which, if appropriately coordinated, could become very attractive.

Gao et al. demonstrated such an approach with parallel rendering of large volume data

distributed over a wide area network [28].

4.3 Algorithm Overview

The algorithm itself consists of two high-level phases. In the first phase, samples

are generated from the input data set. In the second phase, those samples are classified and

composited to form the final picture.

Our goal in the sampling phase, for a given view frustum, is to determine the value

of billions of samples along millions of rays, where there is one ray for each pixel of the image

and thousands of samples along each ray. In abstract terms, a sampling algorithm takes a

data set as input, as well as parameters describing the volume rendering requirements: the

view frustum (i.e. camera location, view direction, view angle, and near and far clipping

planes), the screen size (number of pixels in width, W, and height, H), and the number of

samples, S, to take along each ray.

Given these inputs, the goal of a sampling algorithm is to create an output with

the following properties:

1. A logically structured grid, G, of dimensions WxHxS

2. A field F defined on G, which has sampled the values of the input data set

3. Each F[w, h, s] corresponds to the value of sth sample along the ray corresponding to

pixel (w, h) of the output image for that view frustum

Given a black box that performs a sampling algorithm, it is trivial to implement an

algorithm for the second, compositing phase. For each pixel (w, h) and each sample for that

pixel, we can classify the field value based on some user defined transfer function. Then the
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resulting colors and opacities can be composited using the “under” function (front-to-back

compositing) suggested by Porter and Duff[62] to create the color for that pixel. Doing this

for all pixels yields the final, volume rendered picture.

We also note that a sample-based approach makes for easy integration with ren-

derings of standard geometric primitives. An additional image input to the compositing

module can specify background colors and prematurely terminate rays when they reach the

depth of the first encountered geometric primitive for that pixel. This image is generated

on a previous render pass.

By using samples as our fundamental unit, we have made sacrifices. We lose the

ability to resolve complex interactions between elements, like the type addressed in [22].

But, because the samples are calculated on a per view frustum-basis, this issue is greatly

mitigated. It is our belief that, with a sufficient number of samples per ray and by taking

care in assigning the individual sample values, a sample-based method can provide good

results. This approach of choosing a representative value for a sample is reminiscent of the

clustering approach presented in [33], although at a different resolution.

4.4 Hybrid Sampling Algorithm

In the following subsections, we give an overview of the data management of the

hybrid sampling scheme, without consideration of how to infer the values of the sample

points. These subsections address how to organize the data in an efficient way for paral-

lelization and how to store the field F without exceeding primary memory. The purpose of

our technique is to address the load balancing issues in a distributed memory environment.

In a shared memory environment, such as the one described in [25], many of these load

balancing issues do not occur because the parallelization across image space can be done

adaptively.

The principal contribution of our data organization scheme is obtaining good load

balance for meshes with great variation in the spatial density of their elements. For these

meshes, in the extreme, the number of elements within a region of space can differ by orders

of magnitude. Schemes that parallelize over the output image’s pixels suffer extreme load



43

imbalance with these meshes, because some pixels will cover many more elements within

their projection than others. Similarly, schemes that parallelize over the input data set’s ele-

ments suffer extreme load imbalance, because some elements will take up disproportionately

large portions of the view frustum.

Our multi-stage algorithm, presented in the following subsections, is well balanced

in the amount of elements and the portion of the view frustum processed. Our hybrid

scheme utilizes the best portions of schemes that parallelize over the output’s image and

schemes that parallelize over the input’s elements, while avoiding their pitfalls. It does this

by processing the data in stages. In the first stage, it parallelizes across the elements of

the input data set, but defers processing of the large elements. In a subsequent stage, it

parallelizes across the output image and only then processes the large elements. Again, this

organization of the data processing places hard limits on the work performed at each stage,

ensuring good parallel efficiency.

If a data set has large spatial variation when projected into screen space, it can

greatly complicate load balancing. Again, one reason our algorithm is noteworthy is because

it is well suited to handling these data sets. There are two ways that these spatial variations

can arise. First, it occurs consistently for meshes that have great variation in spatial density

in world space. Second, it can occur to meshes of relatively uniform density in world space

through the camera transformation. An example is when the camera is placed in the middle

of the data set, which often happens during fly-throughs in movies. In this case, even if

the input mesh has uniform-sized elements, elements that are near the camera will occupy

orders of magnitude larger portions of the view frustum than those farther from the camera.

Our sampling algorithm contains a total of three stages, characterized as Small-

Element Sampling, Communication, and Large-Element Sampling. Also, the algorithm is a

dual partition scheme; one partition is of the input data, the other partition is of the rays.

In the Small-Element Sampling stage, the first partition is used. The Communication stage

re-distributes between the two partitions. And the Large-Element Sampling stage uses the

second partition.

Section 4.4.1 discusses the two partitions, 4.4.2 discusses the three phases of the

algorithms, and 4.4.3 discusses the load balancing.
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4.4.1 Partitions

The partition of the input data is done by the greater VisIt system and is guar-

anteed to assign approximately equal numbers of elements to each processor. Although we

might be able to modestly reduce communicate costs by re-partitioning the data, we do

not employ this technique. First, given the massive size of the data sets we are operat-

ing on, it is not viable to re-partition all of the data for each rendering. The only viable

re-partitioning scheme would be to re-partition one time and use that for all subsequent

renderings. However, even if we did perform a one-time re-partition, it is difficult to find one

that will truly help with parallel efficiency. It is often not possible to create partitionings

that are balanced in both number of elements and spatial footprint. Further, this will not

mitigate the issue when the camera is in the middle of the data set.

The second partition is of the samples. We start by dividing the image’s pixels

among the processors. The division of the samples then follows naturally. Our goal with

this partition is to re-assign the samples so that each processor can composite its pixels

with no further communication.

4.4.2 Sampling

We define “small” elements as elements that cover a small number of samples,

for example less than one hundred. Similarly, “large” elements are elements that cover

one hundred samples or more. We describe how large elements are identified later in this

chapter.

In the first, Small-Element Sampling stage, we sample each small element and

defer sampling of large elements. This stage has two outputs. One output is the large

elements that are not sampled. The other is the grid G and the partially populated field

F. Because we focus on “small” elements and we know that each processor is working on

an approximately equal sized subset of the elements, we know that no processor will see a

large number of samples. This reasoning will be further formalized in subsection 4.3. Our

implementation of the structure that stores F is able to scale its size based on how many

samples have been encountered. Thus, this counteracts the problem where F can exceed
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the size of primary memory, because we only have to store the samples we encounter and

we will encounter only a small number of samples.

The second, Communication stage, re-distributes the output of the first stage to

honor the second partitioning. The second partition is created dynamically at this point

in the algorithm. By waiting until the first stage has completed, we can assign the pixels

so that the maximum number of samples and elements remain on their processor of origin,

minimizing communication. This technique of dynamically assigning pixels to processors

to minimize total communication was also used in the hybrid scheme of [64], although their

application was to surface rendering, not volume rendering.

The communication stage consists of “all-to-all” communications between the pro-

cessors. Sample points are communicated among the processors, using the partition to de-

termine their destination. When sending a large element, we first examine its bounding box,

and determine which portions of the image space partition the bounding box overlaps. We

then send this element to the set of processors that need to sample it in the next stage. At

the end of this stage each processor contains all of the data (as either samples or elements)

necessary to create its portion of the image with no further communication.

Our scheme does not take advantage of the optimization that allows contiguous

samples to be pre-composited, allowing a few bytes to take their place. This optimization is

not well suited to the sampling scheme in section 4.6. But the need for this optimization is

greatly mitigated by the high network bandwidth on modern supercomputers. Empirically,

the sampling stage dominates the algorithm, so this shortcoming is not an issue.

The third, Large Element Sampling stage samples the remaining elements (all of

which are “large”) and adds them to the field F. The large elements are sampled selectively.

Samples outside a processor’s portion of the image space partition are not examined. If an

element spans two portions of the partition, then the element will be sampled entirely by

the corresponding two processors, but no part of it will be sampled twice.

At the end of this stage, all elements have been sampled and the field F is fully

populated. This is the output of our sampling algorithm, which is now well suited for

compositing. Even though F is distributed across the processors, each ray has all of its

samples on the same processor. So compositing can take place with the only necessary
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communication being the collection of the pixel colors to the master processor at the end

of the algorithm. The entire pipeline can be seen in figure 4.1.

Figure 4.1: The volume rendering portion of the pipeline.

4.4.3 Load Balancing

Our goal is to maximize parallel efficiency. In this subsection, we motivate how

our three-stage approach, outlined in the last subsection, helps to accomplish this goal.

Before we analyze the costs of each stage, consider the cost of doing sampling,

whether it is in the first or third stage. When sampling E elements, there is an overhead

with the processing of each individual element. And there is also a cost for each of the

Si sample points updated when processing element Ei. If S=
∑

Si, then the overhead for

processing the elements is O(S + E).

How much work takes place in the first stage? Because we do not process large

elements, we can easily bound this number. We do not process any elements that contain

more than a constant number of samples, α. So the work in the first stage is O(S + E)

= O(α*E + E) = O(E). Of course, asymptotic analysis can be misleading. In this case,
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however, it gives us an actual result. There are strict limits on the amount of sampling

work for each processor. In addition, by modifying α, we can control the amount of allowed

discrepancy in work between the processors. Note that choices of α that are too small,

however, cause a large number of elements to be communicated, which affects performance

in the next stage.

How much work takes place in the second stage? First, consider the cost of sending

a large element. When communicating a large element, the many samples it covers are not

being communicated. If our constant, α, is large enough, then the cost to communicate large

elements will always be less than the cost to communicate its samples. Following this logic,

the most communication the algorithm can undergo is when communicating only samples.

Although this number can be quite large, the bound on the amount of data communicated

is a nice property in the context of extremely massive data sets, like the 27 billion-element

simulation we discuss in the performance section.

The only work done in the third stage is the sampling of large elements. In this

stage, each processor is only responsible for a limited number of samples – those that are

contained within its portion of the view frustum. This bounds how much sampling work can

be performed. In addition, each element in this stage is “large” and covers many samples.

So the number of elements (E) will be much less than the number of samples (S): E < S/α.

So, in this stage, the amount of work per processor is also bounded: O(E+S) = O(S/α +

S) = O(S).

Summarizing, for all three stages, the amount of work per stage is bounded. In

addition, most processors approach these bounds, leading to good parallel efficiency. Of

course, degenerate cases exist where some processors will be at their theoretical bounds

while other processors spin idly. In practice, however, the amount of work per processor is

relatively even.

4.5 3D Rasterization

The 3D Rasterization algorithm described in this section is an example of a sam-

pling algorithm from section 4.3. It is similar in spirit to the 2D Rasterization algorithms
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employed by graphics hardware. The key difference, of course, is that the rasterization oc-

curs in three dimensions (over a volume), rather than two (over an image). This technique

is closely related to the method described in [86].

The rasterization algorithm simply operates on each element, one at a time, up-

dating F as it goes. For each element E, the resampler works as follows:

1. Transform E’s coordinates from world space to screen space

2. Calculate E’s bounding box in screen space

3. If we are deferring large elements and the bounding box of E covers too many samples,

add E to the output and continue to the next element

4. Determine the set of integer depths, { Di }, that overlap between E and and the

output grid G

5. For each Di, slice E by Di, resulting in polygons2

6. For each slice, employ a standard rasterization technique on the resulting polygons,

updating the portion of the field F corresponding to Di.

For clarity, consider the following example for a single element:

The first step is to transform the element to screen space (defined over Width,

Height, and Depth axes). Assume the result is a tetrahedron, T, with points (8.5, 6.5, 4.2),

(12.5, 6.5, 4.2), (10.5, 11.1, 4.2) and (10.5, 7.5, 6.8). The second step would be to calculate

its bounding box: [8.5-12.5, 6.5-11.1, 4.2-6.8]. In the third step, we determine the bounding

box that the element can contain no more than 40 (4×5×2) samples, so this element is not

“large”. Then we proceed to step 4 and determine the integer depths that overlap between

T and G: 5 and 6 (see figure 4.2).

We would then slice T by D=5 (see figure 4.3). This slice results in a triangle.

We then employ a standard rasterization technique to the triangle. We would start by

rasterizing along Heights 7, 8, and 9. For Height=7, we find samples at Width=10 and

Width=11. Height=8 also yields samples at 10 and 11. Height=9 yields no samples. The

2Curvilinear meshes can technically give curved polygons. We approximate these with linear polygons,
similar to techniques used for isocontouring.
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Figure 4.2: Tetrahedron T, rendered transparently in cyan. Slice D=5 is gray, D=6 is black.

entire slice at D=6 also yields no samples. In all, tetrahedron T yields 4 samples. These

samples are then placed into F.

Figure 4.3: Slice at D=5 (left) and D=6 (right)

The 3D rasterization algorithm has many positive traits. First, for each element,

it is possible to immediately determine the bounding box of the samples which overlap it.

It is not necessary to trace rays to discover the list of cells along that ray. Second, unlike a

standard projection scheme, the ordering of the resulting samples is preserved by the field F

and the grid G. Third, this scheme is fairly general. It can accommodate structured grids,

and curvilinear and unstructured meshes (but not point clouds). For unstructured meshes,

it can accommodate the complete finite element zoo and virtually any additional element

type. It can operate on multiple fields, allowing for multi-variate volume renderings. Fields



50

can be either element-centered (i.e. piecewise constant) or node-centered. All of these

options are incorporated into our implementation.

There are also negative aspects to the rasterization scheme. First, the technique

for sampling is prone to missing data. If an element does not overlap with a sample point

then that element is not reflected in the resampling. This is a common case for extremely

small elements and more discussion can be found in [46]. We overcome this problem by

having small elements locate the nearest sample point and attempt to affect its value. This

can lead to two or more elements trying to affect the same sample. In this case, we use

an arbitrator that chooses the “best” sample, where “best” is chosen to be the one with

the highest opacity. The second problem with this scheme is less serious. The method of

examining an element’s bounding box to estimate the number of samples it contains can

lead to overestimates. We do not attempt to correct this problem, because it does not lead

to appreciable performance degradation.

4.6 Kernel-Based Sampling

Our Kernel-Based Sampling algorithm is designed to have each data point influence

a region around it. This is a natural operation with element-centered variables. The data

point is placed at the middle of an element and its region is guided by its bounding box.

For nodal variables, each node’s neighboring elements must be examined to determine the

correct size for its sampling region. In our current implementation, we operate only on

element-centered variables, and we average nodal variables to element centers.

The procedure to process an element E with variable value V is:

1. Transform E’s coordinates from world space to screen space

2. Calculate E’s bounding box in screen space

3. If we are deferring large elements and the bounding box of E covers too many samples,

add E to the output and continue to the next element

4. Calculate a maximum radius of influence for E, Rmax(E)
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5. For every sample within Rmax(E) of E’s center, update the field F with V and a

weight ω

The size of the kernel, Rmax(E), is based on the size of the element, allowing

larger elements to have greater impact than smaller elements. Rmax(E) is assigned to be

fifty percent bigger than the distance from the center of the element’s bounding box to one

corner of the bounding box. However, for small elements, Rmax(E) can be so small that it

will not affect any samples. To counteract this, we never let Rmax(e) drop below the global

constant, Rmin. Rmin is chosen so that even the smallest element will affect at least one

sample.

The weights, ω, vary based on the distance to the element center. Samples closest

to the element center should strongly reflect the element’s value. Moving away from the

element center should allow for more blending with the neighboring element values. So we

set the weight to be inversely proportional to the distance to the center of the element.

The formula for weight, ω, is:

ω = 1
Dp+ε - ω0, where

Dp = proportional distance to center of element

and ε and ω0 are shape factors

For each sample, Dp = Ds

Rmax
, where Ds is the distance from the sample to the

center of the element. The ε term eliminates division by zero, and determines the peak

contribution an element can make, which occurs when the element center and a sample are

coincident. When the distance from a sample to the element center is Rmax, Dp is one.

Since we would like the weight to be zero at the maximum radius, we introduce our second

shape factor, ω0, and set it to 1
(1+ε) .

Once each element has updated the samples, we assign the final sample value to

be the weighted average. Formally, if elements Ei update a specific sample with their values

Vi and weights Wi, then the final value of the sample will be
P

Wi∗Vi
P

Wi
. Also, note that this

calculation does not require storing all encountered samples. Instead, running totals can be

kept for
∑

Wi ∗ Vi and
∑

Wi, minimizing storage overhead.

Our
∑

Wi term also plays an important role in establishing the boundary of the
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data set. Each data point is sampled onto the region around it, regardless of the samples

actual membership in the data set. Samples outside the boundary will have low
∑

Wi

values. Reducing the opacity of these samples effectively creates the boundary in an anti-

aliased way. Note that this is similar to the strategy applied in [61], although we do this

correctly in the post-transformed space, where [61] did this in the pre-transformed space.

Figure 4.4: On the left, an element’s (red circle) sampling region (dotted circle) includes
samples outside the data set boundary (marked with the four-way arrow). These samples
will be updated with the element’s value, but they will not affect the final picture because
their

∑

Wi will be low. On the right, we see how each of the samples inside the data set
are affected by many elements, giving higher

∑

Wi, while those outside the data set are
affected by fewer elements.

The Kernel-Based Sampling algorithm also has many positive traits. First, like the

3D Rasterization algorithm, elements can be sampled independently and efficiently. The

ordering of the resulting samples are preserved by using the field F and the grid G. Second,

this scheme is also very general. In addition to handling all mesh-based data sets, this

scheme is ideal for rendering point clouds. Third, unlike the 3D Rasterization algorithm,

this technique consistently produces high-quality pictures and more accurately represents

the entire input, including small elements.

There are also negative aspects to this scheme. First, element shapes are com-

pletely disregarded in the current implementation. Samples are updated based entirely on

the element’s Rmax. In the common case for large scale data, however, an element is pro-

jected to only a few samples and this is inconsequential. Second, this algorithm processes
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the same sample multiple times, one for each of the nearby elements. This contrasts with

the 3D rasterization algorithm, which only operates on a given sample one time. This

results, of course, in higher running time.

4.7 Scalability

We now present the scalability of the algorithm. We performed the study on a

100 million element unstructured mesh and a 1024x1024 image with 1000 samples in depth.

For each processor count, we measured the elapsed rendering time with multiple options.

One option was the sampling algorithm to use: 3D rasterization or Kernel-based. The other

option was whether the camera was located inside or outside the data set. Tables 4.1 and

4.2 show that the algorithm was strongly scalable in all configurations that we tested.

Although we feel the algorithm has excellent scalability in this regime of processor

count, we foresee some limitations as processor counts get larger. The time to create the

final output image, including collecting portions from other processors and transferring

the image from the server to the client for display, takes one tenth of a second. When

more processors are used, this constant will begin to affect scalability. We do believe,

however, that this algorithm will still be effective with larger processor counts, but as a

weakly scalable algorithm. We believe the frame rate can never fall below some constant

(minimally 0.1 seconds), but, given more and more processors, we feel that proportionally

more data can be rendered in the same amount of time.

The timings were run on gauss, a 512-processor cluster of 2.4GHz Opterons con-

nected by an InfiniBand network. Gauss is currently #409 on the Top500 listing of Super-

Computers. For the timings, the algorithm was embedded in VisIt, rather than run as a

stand-alone application. We disabled the mode that incorporates geometric primitives (for

bounding boxes and other annotations), however, because delays that mode introduces are

unrelated to our algorithm.
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3D Raster- 3D Raster- Kernel- Kernel-
Procs ization/ ization/ Based/ Based/

outside inside outside inside

25 12.0s 21.9s 12.1s 63.7s

50 5.8s 12.1s 5.8s 30.5s

100 3.0s 7.0s 3.1s 15.3s

200 1.6s 3.6s 1.3s 7.6s

400 0.9s 2.1s 0.7s 4.1s

Table 4.1: Measuring absolute running time for different configurations and different pro-
cessor counts.

3D Raster- 3D Raster- Kernel- Kernel-
Procs ization/ ization/ Based/ Based/

outside inside outside inside

25 300s 548s 303s 1593s

50 290s 605s 290s 1525s

100 300s 700s 310s 1530s

200 320s 720s 260s 1520s

400 360s 840s 280s 1640s

Table 4.2: Measuring the total running time on all processors for different configurations and
different processor counts. (Total running time is calculated as the running time to produce
the image multiplied by number of processors.) Our algorithm produces approximately the
same number for each column, which is the trait of a strongly scalable algorithm.

4.8 Results

4.8.1 Shock Propagation in Nano-Porous Metal

Classical Molecular Dynamics (MD) simulations are a common means to study ma-

terial properties at the fundamental level of individual atoms, including such phenomena as

plasticity, ductile failure, brittle failure, material response to ion or micro-meteorite impacts,

laser ablation and more. The simulation we use for test purposes involved 1,013,455,626

(over a billion) atoms resulting from the study of shock wave propagation through a metallic

foam. In this case, the shock was introduced in a high density region to the left of figure 4.5,

and has traveled partway through the porous solid, which was set up to gradually decrease

in density as the shock travels to the right of the material sample. A typical variable of in-

terest is the local energy potential of each atom, which can reveal dislocation and slip-plane
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structures that arise in response to the shock passage. The transfer function was chosen to

reveal these structures (seen toward the left of the image as cross-hatch like patterns), as

well as the unshocked, lower-density filament structure to the right (with the red outlines).

Given there is no mesh structure for MD simulations, the kernel-based resampling

is the only choice for applying volume rendering. For solid mechanics problems like this,

there is a fairly tight distribution of inter-atomic spacings (distance to nearest neighbor).

Typically, it is appropriate to set the resample kernel radius to be a factor of 1.5-3 times

the average inter-atomic spacing, depending on whether views of fine void structures or

smoother averaging is desired for the application analysis.

We visualized this data set using 256 processors. For smaller images (400x400),

each rendering takes about 8 seconds. For large images (1024x1024), it takes 30 seconds.

Figure 4.5: A volume rendering of over a billion atoms, rendered using the kernel-based
resampling method. The simulation was produced by Farid Abraham of LLNL on 8000
processors of the ASC Purple supercomputer, in collaboration with Mark Duchaineau. A
shock is traveling from left to right through the metallic foam, which was designed to
gradually change from high to low density during the shock front propagation. The cross-
hatch patterns on the left show the emergence of plasticity due to dislocations, while the
undisturbed filament structure is highlighted on the right.

4.8.2 Rayleigh-Taylor Instability

We next applied our algorithm to a 27 billion element rectilinear grid simulation of

a Rayleigh-Taylor Instability, where heavy and light fluids mix. This calculation was done
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on the BG/L Supercomputer by the MIRANDA code. We used 256 processors3 and each

1Kx1K image took 3.8 seconds to render (see figure 4.6). This data set highlights one of

the problems with our 3D rasterization scheme. When using one thousand samples per ray,

the 3D rasterization scheme cannot represent all of the data, since there are so many more

elements than sample points.

For rectilinear grids, our 3D rasterization scheme has been optimized to efficiently

find elements that overlap with samples. The purpose for transforming individual elements

from world space to screen space is to quickly identify the samples an elements overlaps

with. For rectilinear grids, this technique is not necessary, as the location of a sample point

can be directly and efficiently calculated. As such, we revert to a simplified sampling scheme

for rectilinear grids that does not transform individual elements to screen space. With this

optimization, voxels that do not overlap with samples are ignored. In effect, this makes it a

scheme that is indifferent to data set size, provided the data set can fit in primary memory.

For any size rectilinear grid, the exact same amount of work is performed. When rendering

a 1 billion element rectilinear grid, with the same number of processors, the rendering rate

improved by a factor of 2.5. We attribute this unexpected speedup to increased L1- and

L2-cache hits.

When we switched to the kernel-based sampling scheme, performance dropped

considerably because every element had to be traversed. In this mode, it took 45 seconds

to generate a picture. Because of the nature of the data set, (smooth features that span

many elements), differences between the two pictures were not significant.

4.8.3 Blast Calculation

Our next calculation simulated an explosive blast wave as it passed over a section

of a wall consisting of reinforced concrete. It was calculated using the ALE3D simulation

code with Arbitrary Lagrange-Eulerian (ALE) methods on a 3D unstructured hexahedral

mesh. For this study, we subdivided each hexahedron into five tetrahedrons, for a total

of 138 million, to produce an unstructured mesh with an element count that would stress

our algorithm. Because some surfaces were so thin, even the kernel-based sampler had

3Machine unavailability forced us to use this smaller number of processors.
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Figure 4.6: The mixing layer between heavy and light fluids. We are rendering based on
vertical velocity. Yellow volumes are moving up, purple volumes are moving down.

problems properly reflecting the data. The averaging of values within a sample’s region led

to smearing. We increased the samples per ray to 2000, which obviously led to a degradation

in performance. We used only 128 processors and were able to render a 1Kx1K frame every

35 seconds (see figure 4.7). Considering we were operating on a larger data set and had

twice as many samples, this is consistent with the scaling study we performed earlier.

4.9 Future Work

There are many performance improvements that can be made to our algorithm.

We did not partially composite samples before sending them, because a sample’s value with

the kernel-based technique can not be determined until all of the surrounding elements have

made their contribution. We believe that, despite this issue, we can proceed with this opti-

mization on a restricted basis by determining situations where samples have received their

full contribution and allowing those samples to be partially composited. Another option

would be to apply compression algorithms on the samples themselves before communication.
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In addition, we could further reduce communication by changing the way we partition the

image volume. We currently partition over the pixels, which leads to long shafts in depth.

An alternative would be to create cubes by dividing the volume in depth as well. This would

increase the volume to surface area ratio, minimizing the number of times a large element

is mapped to multiple processors. We have experimented with implementations like this,

but decided not to present this scheme, because the extra steps to composite the samples

would further complicate the overall algorithm. Finally, we have considered accelerating

the sampling phases by using 3D graphics hardware. Of course, this approach would only

be viable on clusters where graphics hardware is available.

There are also opportunities for improvements in picture quality. We currently

have no lighting model, and we would benefit from incorporating pre-integration techniques.

4.10 Summary

We have presented an algorithm that allows massive data sets to be volume ren-

dered at interactive speeds, given adequate computing resources. The algorithm is sample-

based, and the overhead for processing the samples is high. As a result, this algorithm would

be a poor choice for volume rendering small data sets with low compute power, because a

disproportionate amount of time is spent calculating the values of the samples. But, again,

the algorithm is ideal for massive data sets and we have demonstrated good performance

on some of the largest data sets ever simulated.

We caution the reader against characterizing this algorithm as a brute-force algo-

rithm applied on a large machine to achieve a result. When scaling up to large numbers

of processors, the difficulty comes in maintaining good parallel efficiency. We are able to

do this elegantly with our hybrid approach. By splitting processing into small and large

element sampling phases, the work performed in each phase cannot exceed known bounds.

These bounds guarantee that no processor is tasked with a disproportionate amount of

work to perform while other processors spin idly. This hybrid algorithm is the principal

contribution of this chapter. In addition, we have introduced some sampling schemes that

are well suited for this general approach and allow for either quick or accurate sampling.



59

Figure 4.7: An explosive driven blast wave passing over a round section of reinforced con-
crete (1/4 symmetry)
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Chapter 5

Comparing Data Sets

In this chapter1, we present a data-level comparative visualization system that is

very general in nature. The types of possible comparisons include comparisons in physical

space, comparisons in logical space, comparisons across symmetry conditions, and compar-

isons to analytical functions.

Our system utilizes two key pieces of technology: (1) cross-mesh field evaluation –

algorithms to evaluate a field from one mesh onto another – and (2) a highly flexible system

for creating new derived quantities. Further, these capabilities are deployed in a richly

featured, data flow network-based application, enabling diverse visualizations and analyses.

The techniques have been fully parallelized and our results are applicable to tera-scale and

even peta-scale data sets.

Where many previous comparative visualization efforts have focused on “A − B”

comparisons, our system is able to compare many related simulations in a single analysis.

In this chapter, we describe new applications of comparative techniques that allow for novel

visualizations of ensembles of simulations or time-varying data.

1Much of the text from this chapter comes from a pending submission to the journal IEEE Transactions
on Visualization and Computer Graphics. The submission was a collaboration between Hank Childs, Sean
Ahern, Jeremy Meredith, Mark Miller, and Ken Joy
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5.1 Introduction

One of the most common activities of an analyst is to perform comparisons. These

comparisons take different forms:

• comparing a simulation to experimental data,

• comparing a simulation to a legacy simulation result,

• comparing the results of a simulation before and after key algorithmic changes,

• comparing the results of simulations with different initial geometries,

• comparing the results of a simulation as it evolves in time.

These are mostly “A-B” type comparisons, where two results are compared. Sometimes,

however, the comparisons take place between a series of data sets, for example when looking

at an ensemble of calculations (such as a parameter study) or looking at time-varying data.

In this chapter, we present a system for facilitating data-level comparisons. Our

system incorporates multiple inputs and creates an output data set that reflects a compar-

ison. The system combines two key technologies:

1. cross-mesh field evaluation, where a field from one mesh is evaluated onto another

mesh, and

2. derived quantity generation, where new fields are created from existing ones

These two capabilities combine to form a powerful and flexible system where end users are

given great latitude to create data sets tailored to application-specific comparative metrics.

We have integrated this system with a richly featured, turnkey application for visualization

and analysis. This allows the new, composite data set to be visualized with well-known

techniques: slicing, iso-surfaces, volume renderings, etc. Our methods are capable of sup-

porting large-scale data and we demonstrate examples where processing is done in parallel

on meshes with hundreds of millions of elements.

The best comparison in design to our system is to that of Shen et al.[69, 70]. For

both systems, the data sets to be compared are placed on a common mesh and derived



62

quantities are generated. Our system, however, contains the following extensions to this

idea, all of which we believe to be new and significant:

• Comparison of more than two input data sets, which enables powerful applications

for time-varying data and parameter studies2;

• Comparison across symmetry conditions as well as to analytic functions;

• The flexibility of applying either position-based or connectivity-based comparisons;

• A richer language for defining derived quantities as well as a richer set of pre-defined

operations, which in turn enables more kinds of comparisons;

• Integration with a richly featured visualization and analysis tool, allowing greater

capabilities regarding how to analyze the composite data set; and

• A fully parallelized solution.

In section 5.3, we discuss the types of comparisons we have addressed. Section 5.4

presents our methods for derived quantity generation and cross-mesh field evaluations within

a distributed-memory data-flow framework. Section 5.5 describes the use of comparative

methods for assessing defects in as-built models, for evaluating time-varying data, and for

outcome analysis with parameter studies.

5.2 Related Work

Shen et al.[69] define three basic areas of comparative visualization: image-based,

data-level, and topological comparisons. Image-based methods compare results in image

space; data-level methods compare results in object space; topological-based methods com-

pare results in feature space.

Most image-based comparison systems [24, 85, 88] perform image differencing al-

gorithms on images from multiple inputs. These systems are limited to comparing visual-

izations where the entire data set can be represented by a single image. These techniques

2In [70], this notion was suggested, but not discussed.



63

are extremely important in the context of comparison to experimental results, such as is

the case with [24] and [88].

The VisTrails system of Bavoil et al.[7] coined the phrase multiple-view comparative

system to describe image-based systems where plots are placed side-by-side or potentially

overlaid. In multiple-view comparative systems, the burden is placed on the human viewer

to visually correlate features and detect differences. Although the human visual system is

often a great feature detector, too often the viewer can infer only gross qualitative differences

in the data sets. Important differences can be too easily obscured and subtle differences are

frequently totally lost.

Topological methods [5, 26, 79] compare features of data sets. Typically, they

survey the data set, create summaries of the data, and develop methods to visualize these

summaries.

The ALICE Differencing Engine of Freitag and Urness [27] is a data-level compari-

son tool. It is limited to comparing data sets that have identical underlying meshes and only

allows data differencing comparisons. Shen et al.[69, 70] place data sets on an intermediate

mesh and utilize derived quantities to form comparisons. As discussed in the introduction,

this is the approach most similar to our own. Sommer and Ertl [72] also base their com-

parisons on data-level methods. Their system employs only connectivity-based differencing,

although they also consider the problem of comparisons across parameter studies.

A separate area of related work is that of derived quantity generation. Many

visualization systems [1, 21, 35] provide subsystems for generating derived quantities. Moran

and Henze give an excellent overview in [54] of their DDV system, using a demand driven

calculation of derived quantities. McCormick et al. furthered this approach with Scout [50]

by pushing derived quantity generation onto the GPU.

5.3 Data-Level Comparison Methods

Our process can be summarized as performing cross-mesh field evaluations and

creating derived quantities. Formally, let M1, M2, ..., Mk denote a set of input meshes,

each containing a corresponding field F1, F2, ..., Fk, and let MC denote some common mesh.
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The cross-mesh evaluation step evaluates each field Fi, for i = 1, ..., k, onto MC , creating

resampled versions of the input fields, FC,i, i = 1, ..., k that represent each of the original

fields on the common mesh. We then employ a function, Ψ(FC,1, FC,2, ..., FC,k) → <n, that

takes elements of the k fields as input and produces a new, derived quantity. The resulting

field, FΨ, defined over MC , is then visualized with conventional algorithms. Using this

framework, we can characterize most previous systems as considering only M1 and M2 and

visualizing FΨ = FC,1 - FC,2.

The remaining questions are: (1) What Mi’s and Fi’s can be used?, (2) What is

MC?, (3) How is FC,i generated?, and (4) What is FΨ?

5.3.1 What Mi’s and Fi’s can be used?

Mi and Fi can come from simulation or experimental observation. Rectilinear,

curvilinear, unstructured, and AMR meshes are supported. The fields can be scalars, vec-

tors, or tensors. Some common examples are: two or more related simulations at the same

time slice, two or more time slices from one simulation, a single data set to be compared

with itself through a symmetry condition, and a data set with an analytic function.

5.3.2 What is MC?

Our system is general enough to use any mesh as the common mesh, MC . It can

be either a new mesh or one of the Mi. In practice, we frequently use the latter option.

However, we also support generating new arbitrary rectilinear grids with a user-specified

region and resolution. Further, it would be straightforward to add other methods of creating

new meshes, like weaving together the input meshes or tetrahedralizing their vertices, but

these techniques seem less immediately beneficial.

5.3.3 How is FC,i generated?

There are two choices for generating FC,i: the evaluation can be made either in a

position-based fashion or in a connectivity-based fashion.

The most common method is by position. Here, the meshes are overlaid and

overlapping elements from the meshes are identified. Interpolation methods are applied
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to evaluate Fi onto MC . This technique is difficult to implement, especially in a parallel,

distributed memory setting, because MC and Mi may be partitioned over the processors

differently, which requires a re-partitioning to align the data. This re-partitioning must

be carefully determined to ensure that no processor exceeds primary memory. Also, it is

important to perform interpolations that do not introduce artifacts, as it is unlikely that the

individual elements of MC and Mi will perfectly overlap spatially. Issues with overlaying and

interpolation are discussed in section 5.4.2. Finally, note that symmetry-based evaluations

are highly related to position-based evaluations, with the difference being an additional

transformation that aligns data sets along the symmetry condition.

The other important evaluation technique is connectivity-based, which requires

that both the input mesh, Mi, and the common mesh, MC , are homeomorphic. That

is, they have the same number of elements, E, and nodes, N , and the element-to-node

connectivities for all elements are the same. This is often the case if MC is selected from

one of the Mi, because for comparisons across time and/or parameter studies the remaining

Mj:j 6=i typically have the same underlying (i.e. homeomorphic) mesh. In this case, the value

of element E or node N in Mi is directly transferred to the corresponding element or node

in MC . Connectivity-based cross-mesh field evaluation is substantially faster; the difficult

task of finding the overlap between elements and then correctly interpolating based on the

overlap is eliminated entirely.

For Eulerian simulations (where node positions are constant, but materials are

allowed to move through the mesh), connectivity-based evaluation yields the same results

as position-based but with higher performance and is the preferred approach. For La-

grangian simulations (where materials are fixed to elements, but the nodes are allowed to

move spatially), position-based evaluations are used most often, because connectivity-based

evaluations generally do not allow analysts to observe differences based on spatial position.

However, connectivity-based evaluation still play a role, since they allow for new types of

comparisons along material boundaries, even if they are at different spatial positions. Fur-

ther, connectivity-based evaluations allow for simulation code developers to pose questions

such as: how much compression has an element undergone? (This is the volume of an

element at the current time divided its volume at initial time.)
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5.3.4 What is FΨ?

There are limitless forms of derived quantities, FΨ, that are necessary for different

types of comparisons in different situations. We list a few of the most frequently used in

table 5.1 as examples. These examples focus on scalar fields, so we emphasize that vectors

and tensors also are supported.

Description Definition

1 Difference F2 − F1

2 Relative difference (F2 − F1)/(F2 + F1)

3 Maximum or minimum (F2 > F1 ? F2 : F1)
(F2 < F1 ? F2 : F1)

4 Determine the simulation containing (F2 > F1 ? 2 : 1)
the maximum or minimum (F2 < F1 ? 2 : 1)

5 Average (F2 + F1)/2

Table 5.1: Common derived quantities for comparisons. For simplicity, we assume only two
meshes, M1 and M2. The common mesh (MC) is M2, and the fields from the evaluation
phase are F1 and F2. #1 allows users to explore the differences between the two data sets.
#2 is used in a similar fashion, but amplifies small changes on relatively small quantities.
#’s 3-5 (minima, maxima, and averages) are useful when going beyond simple “A − B”
comparisons. When analyzing time series or parameter studies with many related inputs,
these quantities allow for visualization of all data sets with a single, composite data set.

5.4 System Description

Three critical pieces make up the comparative system: the derived quantity system,

the cross-mesh field evaluation methods, and the greater system that allows a distributed,

parallelized implementation. The greater system has already been described in chapters 2

and 3 so its description will be omitted here.

There are other components of the system that have lesser importance. We enu-

merate them here only for completeness and do not discuss them further: We have provided

an interface that allows the user to manage the entire comparison process, including what

data sets are compared, how, and onto what mesh. We have provided symmetry operators

that reflect a data set across a plane, a line, or a point, as well as arbitrary affine transfor-

mations (specified by a 4x4 matrix). We have the ability to evaluate an analytic function
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on any mesh. Finally, we have routines to construct high-resolution rectilinear meshes, to

serve as the common mesh, MC .

5.4.1 Derived Quantities

There are two key areas to the derived quantity system. One is the expression

language that allows end users to create new, arbitrary derived quantities. The other is the

mechanism that transforms an instance of an expression into a form suitable for data flow

networks.

Expression Language

We have developed a functional, string-based system to allow users to create new

derived quantities. This results in an expression language syntax that enables users to

compose derived quantities in arbitrary ways. A major goal of the design of our expression

language was to provide an intuitive interface where creation of new derived quantities

required little to no learning curve for common operations. For example, the average of two

fields, A and B, is as simple as “(A+B)/2”.

Of course, users will want to create derived quantities that are more than simple

mathematical constructs. Support exists in the language for composing scalar quantities

into vectors or tensors, and for extracting scalar components back out. Notation for strings,

lists, ranges, and strides allows selection of materials, parts, and other subsets of elements.

For accessing other files, either within the same sequence or in different sequences, the

language supports references by cycle, absolute and relative time index, and filename. Other

named operations are referenced as functions, and a small selection of the over one hundred

available are listed in table 5.2.

The strength of our expression language lies in the richness of functionality we

have provided and the interoperability between these expressions. Consider, for example,

computing divergence (5). If a two-dimensional vector F is defined as Px̂+Qŷ, then 5F =

∂P
∂x + ∂Q

∂y . A user can calculate divergence directly using the built-in function, divergence().

But, for illustrative purposes, it is also straightforward to calculate divergence using other

functions as building blocks: “divF = gradient(P)[0] + gradient(Q)[1]”. We created a
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Math +, -, *, /, power, log, log10, absval, ...

Vector cross, dot, magnitude

Tensor determinant, eigenvector, effective (e.g. strain), ...

Mesh coordinates, polar, volume, area, element id, ...

Field Operator gradient, divergence, curl, Laplacian

Relational if-then-else, and, or, not, <,≤, >,≥, =, 6=
Mesh Quality shear, skew, jacobian, oddy, largest angle, ...

Trigonometric sine, cosine,..., arctangent, degree2radian, ...

Image Filters mean, median, conservative smoothing

Miscellaneous recenter, surf. normal, material vol. fraction, ...

Table 5.2: Our expression language allows for all of these functions to be combined in
arbitrary ways.

custom scanner and parser that constructs a parse tree based on expressions like this one.

Figure 5.1 contains the parse tree for this divergence expression.

Figure 5.1: Creation of a derived quantity. On the left, we see an expression’s parse tree.
On the right, we see the linearized data flow network for that parse tree.

Data Flow Networks

When assembling a data flow network, the Expression Evaluator Filter (EEF) is

used to construct derived quantities. The EEF is typically inserted as the first filter in the

pipeline, immediately following the file reader module. In a preparatory phase, the other

filters place the names of their required variables into a list. When executing, the EEF
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cross-references this list with known expression names to determine what derived quantities

need to be calculated.

The EEF dynamically creates a sub-network to create needed derived quantities.

To do this, it first consults the parse trees of the expressions. For each node in each

parse tree, a filter that can perform the corresponding operation is placed into the sub-

network. Ultimately, this sub-network reflects a linearized form of the parse trees. The

linearization process requires the EEF to do dependency checking between all of the parse

trees for all of the expressions involved to ensure that every filter has the inputs it needs.

Our implementation supports the linearization of any parse tree, including this dependency

checking. An example of the pipeline from the divergence expression from the previous

subsection is also in figure 5.1.

Our systems support the accumulation of partial results onto the common mesh

MC so that individual FC,i’s can be quickly discarded. While the sub-network is executing,

the EEF is able to determine when intermediate variables are no longer needed and remove

them. Through this mechanism, the EEF is able to successfully handle many related data

sets that would otherwise exceed the available memory.

Cross-mesh field evaluation is related to derived quantity generation because, from

the perspective of the common mesh, it results in the creation of a new field. So it is natural

to expose cross-mesh field evaluation capabilities as expressions. To perform a cross-mesh

field evaluation, the user simply defines an expression involving built-in functions for the

evaluation algorithms – position-based, connectivity-based, and symmetry-based. (Com-

parisons to analytic functions do not merit a filter in this context because there are no

“cross-mesh” comparisons.) Like all other expressions, the comparison expressions have

corresponding filters that can be placed in the sub-network to perform the cross-mesh eval-

uation. By combining these algorithms with expressions, users can direct the creation of

new, derived quantities from a multitude of sources on the same common mesh. Further-

more, they can manipulate these quantities using all of the previously mentioned expressions

to create interesting comparisons.

Finally, although derived quantity generation typically takes place immediately

after reading the data, it is also possible to defer their evaluation until later in the pipeline.
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This ability allows for the common mesh to be transformed before the cross-mesh field

evaluation takes place. This is important when registration is needed, for example for

comparison with experimental data.

5.4.2 Cross-Mesh Field Evaluation

The implementations of the various filters for cross-mesh field evaluation (CMFE)

are similar. They all have one input for the common mesh and they all are capable of

dynamically instantiating an additional data flow network to obtain Mi and Fi. The differ-

entiating point between the CMFE filters is how they evaluate the fields.

The connectivity-based CMFE algorithm is the simplest. For each element or

node, it places Fi onto MC to create FC,i. The only subtlety is guaranteeing that the

partitioning of the input data (in a parallel setting) is done so that each processor operates

on the same chunks of data. This is easily accomplished through the contract-based system.

The symmetry-based CMFE algorithms are highly related to the position-based

CMFE algorithms. In fact, they use the same underlying evaluation algorithms. The

only difference is that the symmetry CMFE filters apply a transformation to Mi before

evaluation.

The position-based CMFE algorithm is complex. There are three major challenges:

1. Identifying which elements of the input mesh Mi overlap with an element in the

common mesh MC . This is called the overlay step.

2. Fitting an interpolant for the field on the common mesh MC such that it matches, as

closely as possible, at key points on the input mesh Mi. This is called the interpolation

step.

3. Managing the distribution of data to maximize parallel computational efficiency in a

distributed-memory environment.

The Overlay Step

We use interval trees [23] to efficiently identify elements from meshes Mi and MC

that overlaps spatially. We start by placing all of the elements from Mi into the interval
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tree. Then, for each element of MC , we use its bounding box to index the interval tree and

find the list of elements from Mi with overlapping bounding boxes. We examine this list

to find the elements that truly overlap (as opposed to only having overlapping bounding

boxes). If MC contains NC elements and Mi contains Ni elements, then the time to generate

the tree is O(Nilog(Ni)) and the time to locate the elements of Mi that overlap with an

element of MC is O(log(Ni) + α), where α is the number of elements from Mi returned by

the search. This gives a total time of O((NC + Ni)*log(Ni)). Note that α is amortized out

for all but degenerate mesh configurations.

Field Interpolation

The second challenge, performing credible interpolation3, is difficult and we present

only a partial solution. For each position on the common mesh MC , we evaluate the field

on the source mesh Mi at the same position. For element-centered quantities, the positions

are the element centers of each element in MC . For node-centered quantities, the positions

are the nodes of MC . We then assign the value at the position in Mi to the same position

in MC . More accurate interpolations are usually performed by tools called “linkers,” which

represent man-years to man-decades worth of work. Existing “linkers” have flaws: they

are very slow and the interpolations they perform are typically targeted toward specific

scientific domains (at the cost of others). We have designed our system in such a way

that we can easily incorporate functionality from a production “linker” if one becomes

available. Our algorithm was chosen because it favors performance over accuracy. We feel

a good improvement to our implementation, however, would be to add the use of weighted

averaging with weights based on volume overlaps.

Parallel Implementation

The final piece of the problem is to perform cross-mesh field evaluations in a par-

allel, distributed-memory environment. The key issue deals with spatial overlap. When a

processor is evaluating a field from mesh Mi onto the common mesh MC , it must have access

3Credible interpolation is a somewhat amorphous term because it varies over scientific domains. One
definition may be that an interpolation of a density field be mass-preserving. Another favor may favor
preserving sharp boundaries
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to the portion of Mi that overlaps spatially with the portion of MC it is operating on. There

can be no expectation that the decompositions of the two meshes are spatially overlapping.

Our strategy for this issue is to create a spatial partition to guide re-distribution of both of

the meshes for the evaluation phase. Unfortunately, the spatial partition must be created

with great care. If the partition divides space into regions that cover appreciably differ-

ent numbers of elements, it will lead to load imbalances and potentially exhaust memory.

Therefore, we focus on creating a balanced spatial partitioning, where “balanced” implies

that every region contains approximately the same number of elements, Et (see figure 5.2).

The Et elements from each region may contain different proportions of elements from MC

and Mi; in general, it is not possible to have this proportion be fixed and Et be equal on

all processors.

Figure 5.2: In the upper left, two meshes, Mi and MC , are shown. Assume the red portions
are on processor 1, blue on 2, and so on. We employ an iterative strategy that creates a
balanced spatial partition. We start by dividing in X, then in Y, and continue until every
region contains approximately 1/N th of the data, where N is the total number of processors.
Each processor is then assigned one region from the partition and we communicate the data
so that every processor has all of the data for its region. The data for processor 3 is shown
in the last set of figures.

The algorithm to efficiently determine a balanced spatial partitioning is recursive.

We start by creating a region that spans the entire data set. On each iteration and for

each region that represents more than 1/N th of the data (measured in number of elements

covered), we try to select “pivots”, possible locations to split a region along a given axis.

This axis changes on each iteration. Within an iteration, a small number of pivots are
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chosen (typically 5) and spaced evenly among the interval of possible values. All of the

elements are then traversed, and their positions with respect to the pivots are categorized.

Some elements may span the pivot. In this case, the element is assigned to the same side of

the pivot as its center. If a pivot exists that allows for a good split4, then the region is split

into two sub-regions and recursive processing continues. Otherwise we choose a new set of

pivots, whose choice incorporates the closest matching pivots from the previous iteration

as extrema. If a good pivot is not found after some number of iterations, we use the best

encountered pivot and accept the potential for load imbalance.

The implementation of this algorithm is complicated by doing many parallel pivot

locations at one time. The above procedure, if performed on a single region at a time, would

have a running time proportional to the number of processors involved. This, obviously,

is unacceptable. To overcome this, we concurrently operate on many regions at one time.

When iterating over a list of elements, we avoid the poor strategy of interacting with

regions that do not even contain the element. Instead, we employ a separate interval tree

that stores the bounding boxes of the regions. Then, for each element, we can quickly locate

exactly the regions that element spans. This variation in the algorithm gives a running time

proportional to the logarithm of the number of processors, which is more palatable.

As previously mentioned, our notion of a balanced spatial partitioning only guar-

antees that the total number of elements from both MC and Mi are approximately equal.

Note that our interval tree-based approach would give the best results if the number of

elements from Mi are balanced as well. We ignore this issue, because our larger goal is to

ensure that no processor exhausts primary memory.

After the best partition is computed, we create a one-to-one correspondence be-

tween the regions of that partition and the processors. We then re-distribute Mi, Fi, and

MC with a large, parallel, all-to-all communication phase. If elements belong to multiple

regions, they are sent to all corresponding processors. After the communication takes place,

evaluation takes place using the interval-tree based identification method described previ-

ously. Finally, all of the evaluations are sent back to the originating processor and placed

4“Good” is defined as producing a desired ratio, such as one half, or, in the example in figure 5.2, two-fifths
and three-fifths.
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on MC .

We used the data set from the applications section 5.5.1 for a rough illustration

of performance. The evaluation is of a 1.5 million element unstructured grid onto a 1K x

1K x 676 rectilinear grid, in parallel, using eighty processors. The most expensive phase is

evaluation. In this phase, each processor is doing nearly ten million lookups on its interval

tree, which justifies its non-interactive running time. Table 5.3 summarizes the times spent

in different phases of the algorithm. The inclusion of this information clearly does not serve

as a performance study, which will be studied further in the future. However, it does inform

as to the general running time for large problems.

Establishing Communi- Building
Phase Spatial cation Interval Evaluation

Partition of Data Tree

Time 0.7s 2.9s 5.2s 27.4s

Table 5.3: The time spent in the different phases of the parallelized cross-mesh field evalu-
ation algorithm. The communication column represents communicating data to create the
balanced spatial partitioning, and also the time to return the final evaluations.

5.5 Applications

5.5.1 As-Built Modeling

Simulations are often run on meshes that represent simplified versions of the real

world objects they simulate. Details due to manufacturing processes are not often consid-

ered. As-Built Modeling [38] is an effort to incorporate these manufacturing details into the

simulation process. Instead of running a simulation of an object “as designed,” they run

a simulation of the object “as built.” Of course, this requires the creation of a mesh that

includes manufacturing details. Once such data is available, analysts then wish to compare

results from the “as designed” and “as built” simulations. This leads to two key questions

our comparative visualization and analysis techniques help to answer. One is: how does the

“as built” mesh compare to the real world object from which it is generated? The other is:

how do differences in an object’s “as designed” and “as built” forms lead to differences in
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their respective simulations?

Assessing Errors in the As-Built Object

Here we describe how our system was applied to assess the error in how well

the “as built” mesh represented the real world object. To better describe the errors with

mesh creation, we now describe the underlying process of obtaining the as-built geometry.

First, a part (in this case, a cylindrical phantom part shown in figure 5.3) was CT imaged.

This resulted in a 676 million data point regular grid with intensity information. Next,

segmentation was performed (by grouping regions with similar intensity), the boundaries

of each material were extracted, and then decimated. The decimation step was necessary

to reduce the number of facets to a size suitable for input to a mesh generation tool. The

decimation phase reduced the number of facets from almost one million to nearly 250,000.

Once decimated, the surface was imported into a mesh generation tool and an unstructured

mesh of 1.5 million hexahedra was produced.

Figure 5.3: A phantom cylindrical model of four materials: aluminum, epoxy, air, and
cellulose. Not represented is the glue material, which exists for the as-built part, but is not
included in the as designed model. On the left is the design schematic, on the upper right
is an illustrative rendering, and on the lower right is a photograph of the actual (as-built)
part.
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Our data-level comparative techniques cannot help quantify the errors associated

with the CT or segmentation processes. But they can be used to quantify the differences

between the segmented CT data set and the output of the mesh generation tool. We

measured this error by measuring the volume overlap between the data (shown in figure 5.4),

using a position-based CMFE. For each part, the new, derived field was a constant “one”

where there was overlap and a “zero” where there was no overlap. This was accomplished

through an option with the position-based CMFE to set a constant value in non-overlapping

regions (in this case, zero). After calculating the volume of the segmented CT part, we

removed the regions with no overlap. We then calculated the volume of the resulting data

set. The resulting volume overlaps (shown in table 5.4) for aluminum was good overall, while

the glue and air regions had poor overlap (due to a displacement that occurred during the

meshing process).

Figure 5.4: The segmented CT data (green) and the as-built geometry (blue), which were
used for the volume overlap in table 5.4.

Volume as Volume % agreement
Part segmented CT overlap

Aluminum 1.344 1.312 97.6%

Air 0.457 0.401 87.7%

Glue 0.022 0.014 63.6%

Table 5.4: The volume overlaps of several parts. Epoxy and Cellulose are not represented,
because they are not distinguishable using X-ray CT imaging.
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Differences In Initial Meshes of As-Built and As-Designed Objects

The next analysis question was to determine the scope of as-built defects in the

initial geometries. Using a similar technique to our CT data comparison, we calculated

volume overlaps between the as-built and as-designed initial geometries. The results (shown

in table 5.5) help justify the interest in as-built modeling. Overlaps were less than 95%

for most materials (this is considered quite low), although some of this difference can be

attributed to the as-built modeling process itself.

Part Volume Overlap With % agreement
As-Built As-Designed

Aluminum 1.33 1.25 94.0%

Air 0.407 0.396 97.3%

Epoxy 40.42 40.27 99.6%

Cellulose 1.18 1.08 91.5%

Glue 0.05 0 0%

Table 5.5: The volume overlaps of the initial geometries for the as-built and as-designed
simulations. The epoxy and cellulose materials were differentiated through multi-modal
analysis that incorporated ultrasonic scans (see [38]).

Differences In Behavior of As-Built and As-Designed Objects

The final question was to assess the differences between the as-built and as-

designed models during the simulation process. For both geometries, a shock was placed at

the top of the epoxy and the effects of that shock were simulated for ten microseconds. We

visualized the differences in effective plastic strain, because it is a cumulative quantity, and

differences between the two calculations at the final time slice are effectively integrated over

all previous times. In figure 5.5, differences between the as-built and as-designed models

are clearly seen at the contact points between the materials, throughout the cellulose, and

inside the aluminum, especially parallel to the top of the cellulose.

5.5.2 Rayleigh Taylor Instabilities

Rayleigh-Taylor instabilities simulations model the mixing of heavy and light flu-

ids. For this study, we looked at two types of related data sets. First, we observed a single
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Figure 5.5: Plotting difference in effective plastic strain for the aluminum cylinder and the
cellulose. The two plots correspond to two different cross-sections of the object.

simulation and its evolution in time. Then we looked at a parameter study, where tur-

bulence parameters were varied to study how differences in these parameters affected the

results. Both sets of simulations were two-dimensional calculations and performed by the

Lawrence Livermore simulation code ARES.

Time-Varying Data

We started our analysis by looking at a single Rayleigh Taylor instability calcula-

tion that simulated ten microseconds, creating eighty-five time slices. Rather than focus on

the differences between two time slices, we created visualizations that would summarize the

whole data set. In particular, we were interested in summaries derived from a given binary

condition, BC(P, T), where BC(P, T) is true iff condition C is true at point P and time T.

For a given point P, the derived quantity was:

{ time(P): BC(P, time) AND (¬∃t
′

: t
′

< time AND BC(P, t
′

)) }

This derived quantity is a scalar field that, for each point P, represents the first

time that BC(P, T ) is true. For our study, since we were observing the mixing of two fluids,
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we chose BC(P, T ) to be whether or not mixing between the fluids occurs at point P at

time T5. From figure 5.6, we can see that the mixing rate increased as the simulation went

on (because there is more red than blue in the picture). We comment that the technique

demonstrated here, showing a plot of the first time a binary condition is true in the context

of time varying data, is very general. Further, we believe this is the first time that it has

been presented in the context of creating these plots of this form (by using of data-level

comparative techniques).

Figure 5.6: Along the top, we see a visualization comprising all time slices. Blue areas
mixed early in the simulation, while red areas mixed later. Gray areas did not mix during
the simulation. There is some gray inside the bulges at the bottom of the plot, because the
simulation’s output frequency was not high enough to measure the changes in those areas.
This plot allows us to observe mixing rates as well. Along the bottom, we include three
time slices for reference. Heavy fluids are colored green, light fluids are colored red.

5A point is defined to be mixed if the element containing that point ever contains multiple materials or if
the element is clean, but the material it contains differs from the material for that point at the initial time.
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Parameter Studies

A simulation of a Rayleigh-Taylor instability is dependent on certain coefficients,

which are adjusted in different situations. An important question is to understand how

variation in these coefficients affects the outcome of a simulation. These effects can be

monitored during parameter studies, where these coefficients are varied and the results are

compared. For this parameter study, two coefficients were varied independently: the coeffi-

cient for turbulent viscosity and the coefficient of buoyancy. For each coefficient, five values

were chosen. Twenty-five calculations were then performed, one for each pair of coefficients.

We focused on differences in magnitude of velocity, i.e. speed. This quantity had

the most variation throughout the simulations and we wanted to characterize the relation

between speed and the coefficients. We examined three different derived quantities defined

over the whole mesh. The first quantity was the index of the simulation that resulted in the

maximum speed at the given point. The second and third, respectively, were the coefficients

of turbulent viscosity and buoyancy corresponding to that simulation index.

If “sid” is a simulation identifier, Ctv(sid) and Cb(sid) are the turbulent viscosity

and buoyancy coefficients for “sid”, then the derived quantities, for each point P are:

1. maxsid(P ) = arg max
sid∈all 25

speedsid(P)

2. Ctv of max speed(P ) = Ctv(maxsid(P ))

3. Cb of max speed(P ) = Cb(maxsid(P ))

The results of these derived quantities are displayed in figure 5.7. From the

maxsid(P ) plot, we can see that no one simulation dominates the others in terms of max-

imum speed. From the Cb of max speed(P ) plot, we can draw modest conclusions, but it

would be difficult to claim that this term is greatly affecting which simulations have the

maximum speed. From the Ctv of max speed(P ) plot, we can see that most of the high

speeds either come from very low or very high turbulent viscosity coefficients (colored blue

and red, respectively). We quantified this observation (see table 5.6), and found that the

simulations with extreme turbulent viscosity coefficients had over three quarters of the total

area, meaning that the relationship between high speeds and turbulent viscosity is large.
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Figure 5.7: In the upper left, we see a normal rendering of speed for a single simulation. In
the upper right, we color by maxsid(P ). In the lower left, we color by Cb of max speed(P ).
In the lower right, we color by Ctv of max speed(P ).

Coefficient very low middle high very
low high

Buoyancy 4.2% 21.1% 20.4% 17.5% 36.8%

Turbulent 47.2% 8.1% 4.8% 8.7% 31.0%
Viscosity

Table 5.6: Quantifying how much space each coefficient covered in terms of percentage of
the total space.

Finally, we were also interested in quantifying the changes from simulation to sim-

ulation in our parameter study. We did this by calculating the following derived quantities:

1.
P

all 25
speed

25 2. max
all 25

speed

3. min
all 25

speed 4. max
all 25

speed − min
all 25

speed

The results are shown in figure 5.8. The fourth quantity informs an analyst as

to the maximum differences possible for each point in space. Since we are performing
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these operations on a parameter study, we are effectively quantifying the uncertainty for

this simulation. Of course, there are many alternative ways that an analyst may want

to construct uncertainty information from ensembles of simulations. But we believe that

through the examples we have presented in this section, we have motivated the capability of

our system to do so and the importance of a flexible and powerful derived quantity system.

5.6 Summary

We have demonstrated a powerful system for data-level comparative visualization

and analysis. The system we have developed supports a wide range of comparative analyses

including comparisons in physical space, in logical space, across symmetry conditions, with

analytic functions and between simulated and experimental results. In addition, the system

is very versatile not only in the modalities of cross-mesh field evaluation it offers, but also in

the range of derived quantities that can be generated. Finally, it supports these operations

in a highly scalable, distributed memory, parallel computational paradigm, and we believe

this is the first time this issue has been discussed in the context of visualization.

We demonstrated some powerful applications of this system. The As-Built Mod-

eling section demonstrated the need for parallelization. The volume overlap calculations in

section 5.5.1 and analysis of a parameter study in section 5.5.2 motivated the power of com-

bining data-level comparisons with a richly featured analysis tool. Later in section 5.5.2,

we presented a new, novel technique for visualizing time-varying data by focusing on binary

conditions and leveraging comparative techniques. Lastly in section 5.5.2, we presented

another new, novel technique for visualizing large ensembles of simulations. In addition,

we demonstrated how a system such as ours can be used to calculate uncertainties and

postulate interesting questions for examining ensembles.



83

Figure 5.8: In the upper left, we are coloring by average speed, in the upper right by
maximum speed, in the lower left by minimum speed, and in the lower right maximum
variation. The first three plots vary in speed from zero to two and are colored using a
logarithmic scale. The fourth plot (of differences) ranges from zero to one and is colored
using a linear scale. These plots effectively quantify the uncertainty for this ensemble of
simulations.
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Part II

Improving the legibility of large

data
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Chapter 6

Using Basic Quantitative

Techniques to Improve Legibility

Subsequent chapters discuss advanced techniques for improving legibility. In this

chapter1, we focus on more basic techniques for reducing data set complexity, most of which

are already well-known. These basic techniques can be characterized in two distinct ways:

1. process some of the data; a specific region of interest

2. process all of the data set, but simplify it somehow

Of course, these two methods can be combined as well.

The first method, process some of the data, is important when an end user wants

to explore what is happening in a specific region. Examples range from examining an area

where two materials collide in an engineering simulation to looking at an area of mixing

in a turbulence calculation. The first two sections, Culling By Reference (6.1) and Culling

By Value (6.2), describe techniques that allow the user to cull data and focus on a specific

region of interest.

The second method, simplifying the data set, is described in the Quantitative

Analysis section (6.3), which deals with operations that dramatically reduce the scale of

the data.

1Much of the text from this chapter comes from [19], which was a collaboration between Hank Childs
and Mark Miller
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The principal, new contributions of this chapter are:

1. The idea of using a Subset Inclusion Lattice data structure as the basic descriptor

inside a visualization and analysis tool for characterizing complex relationships.

2. The notion that the assets required by visualization tools are very similar to the assets

required by analysis tools, hence a combined visualization and analysis tool is cost

efficient.

3. Further motivation that interoperable features within a richly featured tool can lead

to powerful analysis.

6.1 Culling By Reference

Simulations often decompose their data in a variety of ways: by files, by materials,

by parts in an assembly, by processor pieces, by levels and patches in an AMR hierarchy, etc.

In addition, there are often key subsets in the data, such as nodes and/or zones representing

boundary conditions, slide surfaces, user-defined tracers and probes.

We call the technique for managing complexity described in this section Culling

By Reference. The technique enables the user to select which parts of the data set are culled

and which are displayed using pre-defined subsets of their data (like the examples described

in the paragraph above). We use a concept from the Sets and Fields (SAF) library[52] called

a Subset Inclusion Lattice (or SIL). The SIL incorporates concepts from graph theory and

set theory and enables users, for example, to turn on and off certain materials or processor

pieces in the display, or to vary the AMR resolution at which data is being displayed.

The SIL is in an encoding of subset relations in graph form. Strictly speaking, a

SIL is a directed, acyclic graph of the inclusion (subset-of) relationships of partially ordered

sets representing the join-irreducible infinite point-sets of some computational mesh (see

[12]). While the SIL necessary to represent relationships for a visualization and analysis

tool does not support this strict mathematical interpretation, it is similar in concept and is

nonetheless called a SIL, although it might be more appropriate named a lite-SIL.

Now let’s discuss the form of our SIL in more detail. The SIL encodes relations
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between the sets (such as subset relations), as well as the corresponding category of a set

(for example the aluminum set is a subset of the whole set using the material category).

The SIL is a graph made up of two sets of nodes: one set corresponds to categories placed

on the data, the other corresponds to subsets of the whole data set. Edges in the graph

always are incident to both sets - describing relationships between subsets and defining the

category of subset. Further, this makes our graph bipartite.

Now consider a more concrete example of this graph (see figure 6.1). One node of

the graph corresponds to the whole data set and it is referred to as the whole. materials and

processors, two category nodes, have directed edges to whole. Under processors, there are

many subset nodes, Proc X, each one corresponding to the subset of the data set from pro-

cessor X. More subset nodes - plastic, air, and aluminum - have directed edges to materials.

Figure 6.1: An example graph of the data set. Subset nodes are colored blue, category
nodes are colored yellow.

The SIL is powerful because it is a general framework for representing diverse data

in an intuitive way. It provides ultimate flexibility in creating multiple subset hierarchies of

a data set. The SIL may have an arbitrary number of subset and category nodes and may

be arbitrarily deep. In addition, it is possible to construct GUI controls to manipulate any

type of SIL (see figure 6.2), even if its form in not known a priori. This enables users, for
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example, to turn on and off familiar subsets of their data that are specific to their simulation,

such as certain materials or domains, or to vary the AMR resolution at which data is being

displayed. In addition, the SIL provides valuable controls to the user to throttle the amount

of complexity being displayed in any one view.

Figure 6.2: The subset selection window allows users to choose which subsets of the data
set they would like to view.

6.2 Culling By Value

In the previous subsection, we described a data culling technique based upon select-

ing from among pre-defined subsets. In this section, we describe another culling technique

based upon data value which we call Culling By Value. There are two general techniques

for doing this: to eliminate portions based on data values or to eliminate portions based on

spatial position. It should be noted that the techniques presented in this section are well

understood and are being presented for completeness.

We have found the most powerful operation to cull by value is isovoluming. Iso-

voluming allows a user to specify a range of interest for a specific scalar quantity and then

remove all portions of the data set outside that range (see figure 6.3). For example, a

user could restrict the data set to temperatures between forty and fifty degrees Celsius. Of

course, some elements may have a portion inside the range and a portion outside the range.

In this case, the isovolume operation will subdivide the element (into tetrahedra) so that

the remaining portion is entirely within the range. In addition, the isovolume operation
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can be applied multiple times with different variables, providing users the ability to ask

questions like: “what portion of the data set has pressure between P1 and P2 and density

between D1 and D2?” [74] contains more motivation for these types of sub-selections.

Figure 6.3: On the left, a data set is shown with thick black lines indicating the areas outside
the isovolume’s range. On the right, the data set resulting from the isovolume operation is
shown.

The ability to make new derived quantities enhances the utility of isovoluming.

Derived quantities can transform non-scalar data into scalar data, for example the mag-

nitude of a vector or the maximum shear component of a tensor, which can then be used

with the isovolume operation. In addition, the derived quantities can be used to construct

new quantities that give greater insight into the data set. A good example comes in [34],

which outlines the λ2-method. This method creates a new derived quantity which identifies

vortical flows. The method involves taking the gradient of the velocity field, separating out

and then re-combining the symmetric and anti-symmetric portions of the resulting tensors,

and solving for its eigenvalues. Vortices can then be identified as connected regions where

two of the eigenvalues are negative. These regions can be easily found using the isovolume

operation.

When culling by value is applied to coordinate fields, the effect is to cull portions

of the data set by spatial position. Many of these techniques are well known: slicing by

a plane, slicing by a parameterized surface, clipping by a plane to produce a subvolume,

restricting the data set to a box, etc. These techniques are simply enumerated here for

completeness. However, the next section, using quantitative techniques, will leverage these

operations, as well as the isovoluming technique described above.
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6.3 Quantitative Analysis

Queries are sinks in a data flow network that produce summary information about

a data set. We distinguish between two classes of queries. The first class, called point

queries, returns information about a single element. Examples of this include the ability

to query the variable values of a specific element, or to perform this operation for all time

states. The second, more powerful class, called aggregate queries, calculates information

about an entire volume or surface. Examples of this include the ability to calculate centroids

or moments of inertia of a volume, integrate a quantity over a volume, calculate the flux

along a surface, find the minimum and maximum values of a quantity, etc. Of course, the

exact functionality within the direct and aggregate queries required to perform meaningful

analysis is dependent on the type of simulation being studied.

One of the most compelling aspects of the architecture presented in this disserta-

tion is the way that queries can be combined with other features. For example, an end user

can use the SIL mechanism to limit the data set processed to a single material of interest.

The user can then remove all portions of that material on one side of a plane. Then the user

can create a new derived quantity that multiplies each element’s density with its volume, to

give the mass per element. Then an aggregate query can be applied to give the total mass

in the volume on the desired side of the plane limited to that material. And this query

can be computed as a function of time. This, of course, is just one example of the way

that features can be combined. But this example motivates the utility of a richly featured

application that has strong quantitative capabilities.

In the example above, we focused on specific data manipulations (isovoluming

and clipping), derived quantity calculations (mass), and queries (integration). But it is

often necessary to add new capabilities in any of these areas. So it is important to keep

in mind that data flow networks provide a highly extensible and customizable framework

and that this framework allows for new quantitative features, new data manipulations, and

new derived quantities to be added and combined seamlessly. This extensibility is crucial

for providing custom analysis for different types of simulations.

More generally, consider how queries fit into data flow networks. Data flow net-
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works typically consist of a source (i.e. file reader), filters, and a sink (i.e. rendering

module). But, with queries, we are introducing a new genre of sinks that produce numbers

instead of pictures. More importantly, queries are extremely effective at reducing complex-

ity and/or improving legibility. Also, these queries can be combined with the assets of

visualization data flow network implementations - file readers and data manipulation - with

all of the associated interoperability.

Finally, this infrastructure is all the more powerful when it is combined with a

scripting language, as has been done with VisIt with its Python-based[56] command line

interface. This is especially important because it allows users to put together automated

“report cards” that describe their data sets. For example, a user could combine the λ2-

method described in Section 6.2 with the quantitative techniques in this section to determine

the amount (i.e. volume) of a simulation undergoing vortical flow. This one number char-

acterizes the data set (and reduces its complexity), allowing it to be compared to other

simulations. So these report cards allow for comparison of related simulations. Further,

they can be used to compare the thousands of related simulations that occur when doing

parameter studies.
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Chapter 7

A Statistical Approach for

Improving Legibility

In this chapter1, we introduce Equivalence Class Functions (ECFs). ECFs are

a new class of derived quantities designed for visualization at the extreme scale. These

functions are defined over equivalence classes of elements from the original mesh obtained

from basic groupings. When used directly, ECFs offer more manageable and meaningful

visualizations. Alternatively, ECFs can be used to synthesize new fields on the original

mesh to help reveal regions of importance.

ECFs offer a new, more powerful kind of data culling based on classifying regions of

mesh according to statistical relationships in fields defined on the mesh. They can be used in

the visualization process in two fundamentally different ways. First, an ECF can be created

and then visualized directly with traditional techniques – using the ECF in an analysis-

oriented manner. Second, an ECF can be used to synthesize new derived quantities on the

original mesh – using it in a synthesis-oriented manner. When used for analysis, ECFs can

reduce data from the extreme scale to something that is more manageable and meaningful,

thereby providing more informative quantities to visualize. When used for synthesis, ECFs

1Much of the text from this chapter comes from an upcoming submission to the journal IEEE Transactions
on Visualization and Computer Graphics. The original idea for this chapter, initial version of a paper, and
implementation were by Hank Childs. However, Mark Miller took over first authorship of the upcoming
submission and it is important to note that his editing of Hank’s initial draft, which was substantial, is what
appears in this dissertation. Further, Dr. Miller, along with Ken Joy, contributed significant ideas, including
renaming the concept from derived data functions to equivalence class functions.
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can be used to identify regions in the original mesh deemed important because, for example,

statistical behavior is significantly different than the average for elements in the same class.

Applied in this way, ECFs help to quickly and effectively reveal the salient portions of

complex data sets.

ECFs are differentiated from previous derived quantity efforts by their ability to

survey and summarize the whole data set, employ statistical reductions, and the ultimate

synthesis of this information back onto the original mesh. After describing the basic tech-

nique, we demonstrate results from the application of ECFs to the visualization and analysis

of turbulent mixing and uncertainty from equations of state.

7.1 Related Work

Several previous publications have presented the idea of creating derived quantities

from the original data set and visualizing those quantities. Many richly featured visualiza-

tion systems, such as OpenDX[1], EnSight[21] and SCIRun[35], provide subsystems for

generating derived quantities. Clyne and Rast discussed the analysis and visualization of

quantities derived from high-resolution numerical turbulence simulations outputs, exploring

the error introduced when computing new data fields from wavelet coarsened approxima-

tions of the original data [20]. The systems described in these papers are very powerful. But

they are often limited to generating only fields that are defined on the original mesh. Unlike

ECFs, they lack the ability to survey and summarize the entire data set onto a new mesh.

However, with respect to creating derived quantities on the original mesh, two fundamental

traits are shared between these systems and our implementation of ECFs. First, each has

a rich set of operators with which to create new fields. For example, there are operators

for arithmetic sum and difference, for the vector derivatives, gradient, Laplacian and curl,

for logical if-then-else and many, many more. The second is the ability to combine these

operators in arbitrary ways. This is critical to leveraging the true power of such a system.

Within the visualization community, ECFs are related to bin smoothed scatter

plots. While a number of papers discuss the application of scatter plots to information

visualization, a fewer number of papers, including [8] and [81], discuss their application to
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scientific visualization problems. In fact, most of the latter applications center around flow

visualization problems using linked views and/or brushing techniques, [8, 30, 36]. When

the ECF summarization operator is average, an ECF will indeed result in a bin-smoothed

scatter plot also known as a regressogram. But the similarity to these well-known techniques

ends there. ECFs admit a wide variety of summarization operations. Furthermore, all the

previous work related to ECFs is focused on what we call analysis-oriented use, while we

also support synthesis-oriented use of ECFs. Finally, no one has discussed the integration of

the kinds of statistical analyses ECFs permit with turnkey, richly-featured, highly scalable

visualization tools.

Outside the visualization community, ECFs are related to several concepts. Quan-

tization is the concept of replacing a continuous quantity with a finite set of discrete val-

ues, [83]. The goal of quantization is usually data reduction and approximation of the

original set of values. ECFs are a broader concept that includes not only approximation

but also arbitrary comparison. Some quantization concepts may be useful in construct-

ing equivalence classes, [89]. Categorical data analysis, [2], developed mostly in the 1960s,

concerns the dependence analysis of “individuals” that fall into categories over several at-

tributes. Individual mesh elements would be the data set “individuals” for a categorical

analysis. This analysis begins by counting the individuals in a multidimensional table de-

fined by the available variables that have been quantized. Some useful concepts from this

domain include marginal tables obtained by collapsing over some dimensions and condi-

tional tables obtained by taking a particular slice of the table. Statistical assumptions used

in analyzing such tables involve multidimensional probability density functions (PDF) and

consequently marginal PDFs and conditional PDFs. Various methods exist for estimating

such PDFs from the multidimensional table or from the original data [68]. The computa-

tion of ECFs described in this chapter is useful for extending analysis of categorical data

to larger data sets.
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7.2 Concept

In this section, we will formally define an ECF, discuss how one is constructed,

and describe the utility of various summarization operators. In the succeeding section, we

will discuss the details of our implementation.

An equivalence class function is constructed using basic statistical analyses to

group the collection of elements from a computational mesh into equivalence classes. A

summary value is computed for each equivalence class by applying a summarization operator

to all the elements in each class. The result is a function defined over a uniform or rectilinear

mesh of equivalence classes. The diagram in figure 7.1 illustrates these concepts. The

remainder of this section formalizes them.

7.2.1 Interpreting Elements of a Mesh as Points in a

High Dimensional State-Space

In scientific simulations, a problem to be simulated is discretized into a number

of tiny pieces called elements. Scalar, vector and/or tensor fields are defined over these

elements. Examples are pressure, velocity, and stress. These fields need not represent

physical properties and may describe literally any quantity the simulation developers choose

such as processor rank, amount of damage to a material, counts of events and so forth. The

collection of all such fields are the dependent variables of the simulation. The dependent

variables define the range of a mapping from a domain defined by another set of variables

called the independent variables. Typically, the independent variables are simply the spatial

coordinate fields. Lastly, we refer to the set made up of the union of dependent and

independent variables as the simulation’s state variables.

Each state variable defined on an element can, in general, vary over the extent of

the element. Nonetheless, for the purposes of simplifying the discussion, we will assume

every state variable is constant valued over each element it is defined on. In other words,

our discussion will focus on the case of piecewise-constant or element-centered fields. In a

later section, we explain how the construction described here can be extended to the more

general case. Hence, we can construct a tuple of state variable values for each element. We
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Figure 7.1: Conceptual Diagram of ECF Generation. Elements from the input mesh(es)
(upper left) are mapped into a high dimensional space (upper right) defined by the simu-
lation’s state variables. This cloud of elements is partitioned into equivalence classes (the
analysis step). Summary values are computed for each equivalence class (the summarization
step). The resulting mesh and field can be visualized directly or can be used to synthesize
a new variable onto the original mesh(es) (the synthesis step).

call this tuple the element state tuple. For example, a tuple such as {x, y, rho, p} might

represent the element state tuple for elements from a simple, 2D mesh in the xy-plane upon

which two dependent fields, density, rho, and pressure, p, are defined, and x and y are fields

corresponding to the centroid of the element.

Finally, note that any derived quantities that are defined on the original mesh can

be treated in a completely analogous manner. They too, can be viewed simply as additional

entries in an element’s state tuple. This allows for derived quantities, including those which

are synthesized from an ECF, to be included in other ECFs.
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7.2.2 Incorporating State Space Variables

If there are S state variables, each element’s state tuple is an S-tuple2. If there are

N elements in the mesh, there are N S-tuples to denote a single instance of the state of the

simulation. More typically, however, there is not just a single state instance. Instead, there

is often a set of states that are related to each other. For example, there is often a time

series. Or, in the case of parameter studies, there is a time series for a set of parameter

choices.

We can accommodate these additional degrees of freedom, folding them into our

current construction, by appending terms to the independent variables and expanding our

element state tuples. If there are T additional independent variables defining M different

states in the state space, then over all states of the simulation, we have MN tuples each of

size (S+T).

The MN, (S+T)-tuples from a simulation will now be denoted as n data vectors,

q, of dimension d = (S+T). We also let Qmin and Qmax be the data vectors formed by

taking the component-wise minimum and maximum values over all n. So, over all states

and over all the elements in each state, the original simulation data takes the form of a cloud

of points, the element cloud, in <d bounded by the d-dimensional hyperbox with corners

Qmin and Qmax. For convenience in notation, we shall index the components of q (e.g.

the state variables) by the symbol si such that q = [qs1
qs2

qs3
. . . qsd

]. Finally, we let

Q = {qi for i = 1 . . . n}.

7.2.3 Equivalence Relations, Subsetting and Data Classification

An equivalence relation, [6], partitions a set into a collection of disjoint subsets.

The subsets are called equivalence classes. Because the set Q represents points in the state

space of a simulation, equivalence relations on Q permit us to utilize state variables in

a myriad of interesting ways to partition Q into subsets that are highly relevant to the

underlying analyses.

2We can accommodate cases where state variables are defined on only some of the elements by using
a suitable value, such as NaN, for the remaining elements, to indicate the associated state variable is not
applicable to them.
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Put another way, treating the elements of meshes from scientific simulations as a

set of points in a high dimensional state-space and then applying equivalence relations to

partition that set creates a new and powerful tool to classify and cull regions of a mesh

based upon statistical relationships between the quantities defined upon the mesh.

7.3 The Equivalence Class Mesh

We begin the construction of the underlying mesh for an ECF, the Equivalence

Class Mesh (ECM), by selecting a subset of the d axes of <d and partitioning each into

intervals or bins in a manner analogous to a histogram. We let D′ be the set of selected state

variable indices, i. Thus, state variable si is selected iff i ∈ D′. Also, denote d′ = rank(D′),

the number of variables in si selected.

The set of selected state variables are used to construct the domain of the ECF.

For an arbitrary state variable, si, partitioning results in a set of intervals defined by

Ik
si

=
[

Qmin
si

+ Hsi
(k), Qmin

si
+ Hsi

(k + 1)
)

for k = 0 . . . Nsi
− 1 (7.1)

where

Hsi
(k) =































khsi
for uniform binning

j=k
∑

j=0

hsi
(j) for non-uniform binning

For uniform binning,

hsi
=

(Qmax
si

− Qmin
si

)

Nsi

and Nsi
is the number of desired bins for state variable si. In this simplest of cases, the

number of bins, Nsi
, for each state variable si are the only user specified parameters. More

advanced alternatives have been considered, but are not presented in this document.

Thus, for each of the d′ state variables the user selects, we obtain a set of Nsi

intervals,

Isi
= {Ik

si
for k = 0 . . . Nsi

− 1} (7.2)
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The equivalence class mesh for the selected state variables is then defined by the Cartesian

product of these sets of intervals

MD′ =
∏

i∈D′

Isi
(7.3)

which for uniform binning generates a uniform mesh and otherwise generates a rectilinear

mesh. Note that the members of MD′ represent d′-dimensional hyperboxes or bins in <d′

and can be logically arranged in an array such that

MD′(j1, j2, . . . , jd′) = Ij1
si1

× Ij2
si2

× . . . × Ijd′

sid′
(7.4)

An arbitrary point, q, in the element cloud Q lands in bin

MD′(j1, j2, . . . , jd′) iff qsi
∈ Ij1

si1
∀ i ∈ D′ (7.5)

7.4 Summarization Operators

The ECM partitions the element cloud into a uniform or rectilinear arrangement

of equivalence classes (or bins). Each class holds a variable number of points. Some may

be empty. So, we have a set-valued, piecewise-constant function. The value of this function

at a given point in the ECM is the associated equivalence class. Note that this intermedi-

ate representation of the data, as a set-valued function, is primarily a conceptual tool for

describing ECFs and would most likely never be instantiated in any actual implementation.

We seek a way of transforming this rather complicated function into one that can be

easily visualized directly using traditional techniques (e.g. a simple scalar, vector or tensor

field) and/or can be used to synthesize a new field on the original mesh. In other words,

we would like to find some way of taking the set of points in an ECM bin and computing

a single scalar, vector or tensor quantity. This involves applying a summarization operator

to the set of points in each equivalence class and computing a single, summary value for

each class.

In typical use, a user would select one of the state variables, different from those

used to construct the domain of the ECF, to serve as the ECF range. In theory, however,
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there is no reason to limit a summarization operator to acting only on one state variable.

Summarization could involve multiple state variables.

The possibilities for candidate summarization operators are almost limitless and

vary significantly depending on the analyst’s needs. Some examples of the possibilities are

briefly described below.

7.4.1 Summarization by Averaging

A common use case is to select one component of q (e.g. one state variable) and

then average this value over all members of each equivalence class. If the domain of the ECF

is defined using the original mesh’s independent variables, then this form of summarization

yields a reduced resolution representation of the original mesh. On the other hand, if the

domain of the ECF is something other than the original mesh’s independent variables,

averaging as a form of summarization yields a bin-smoothed scatter plot.

7.4.2 Summarization by Weighted Averaging

We can also compute summary values in a way which emphasizes some members

in a class over others. For example, we can perform a volume weighted average, or if we are

performing an analysis over time, we can weight elements based on distance in time from

an important event.

7.4.3 Summarization by Class Rank

We can also use the rank of an equivalence class (e.g. the number of members in

that class) as a summarization operator. The resultant ECF has a number of interpretations

relevant from a statistical standpoint. In the case of a one dimensional domain, this form

of summarization yields a histogram. In multiple dimensions, the resulting ECF can be

used to compute non-parametric estimates of the joint probability density functions of the

selected state variables.
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7.4.4 Summarization of Vector and Higher Rank Quantities

The summarization process need not result in a single scalar value for each class.

If we are summarizing vector data, for example, we can compute a summary vector for

each class. In some cases, a simple vector sum may be appropriate. For example, if we are

summarizing a displacement vector, we may be interested in whether or not displacements

by all the members in a class tended to cancel or coincide with each other. In other cases, we

may be more interested in direction of the summary vector and not so much in magnitude.

For example, in the case of a flow field, we may be interested in how much the direction of

flow varies over the members of a class, independent of variations in magnitude of the flow.

7.5 Applications

A Richtmeyer-Meshkov (RM) calculation simulates the mixing of heavy and light

gases as a shockwave passes through them. The canonical orientation is one in which the

shock wave propagates in the positive X-direction passing first through the light gas to the

left and then through the heavier gas to the right. Typically, analysts study the pressure

over the mesh. The figures below demonstrate the application of standard techniques to

visualize pressure from a 25M element RM calculation from LLNL’s RAPTOR simulation

code. Figure 7.2 shows an xy-slice through the mesh while figure 7.3 shows a set of iso-

surfaces. Although some variation in pressure is evident in the slice, it does not appear to

vary significantly. Furthermore, the iso-surfaces tend to appear as parallel sheets with small

deformations. A lot of detail of turbulent mixing in the data is not evident by applying

standard techniques to the native quantities.

Equivalence class functions can be used to more effectively visualize this prob-

lem. First, all of the elements with similar X-values can be grouped together to form an

equivalence class. Second, the functions ”average” and ”standard deviation” can be de-

fined over the equivalence classes. Simply plotting these 1D functions is informative (see

figure 7.4). However, the real discovery in terms of how local trends deviate from global

trends is achieved when synthesizing these functions back into the original data set (see

figures 7.5 and 7.6).
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Figure 7.2: A pseudocolor of pressure along an XY-slice. For pressure, the global trend
dominates local variations.

Figure 7.3: Contours of pressure. This results in essentially axis-aligned planes, because,
again, global trends are dominating local trends.
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Figure 7.4: On the left, we plot standard deviation as a function of X. This is obtained by
grouping all elements with similar X-values into equivalence classes. On the right, we plot
average pressure as a fuction of X (black), average plus ten standard deviations (red), and
average minus ten standard deviations (green).

Figure 7.5: An XY-slice of the number of standard deviations each point is away from the
global trends. (This is (pressure - ECFA) / ECFB, where ECFA is an ECF of average
pressure based on X groupings and ECFB is an ECF of the standard deviations of pressure
over the X groupings. With this picture, for the first time, we can see deviations from the
global trend.
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Figure 7.6: Isocontouring the synthesized ECF. Red regions are two standard deviations
above the global trend, blue are two standard deviations below.
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Chapter 8

Line Scan Techniques for Shape

Characterization

Too often, analysts compare two shapes by placing their pictures side-by-side and

declaring them “close enough”. When presenting results to colleagues, these analysts will

overlay two viewgraphs of the two shapes on an overhead projector so that the audience can

see where the shapes agree and disagree. This practice has led to the phrase “viewgraph

norm”, where the analyst makes an “expert judgment” and declares that two shapes are

either similar or dissimilar.

In this chapter, we consider shape characterization functions. These functions

serve as both a way to describe a single shape and also as a way to quantitatively compare

shapes that goes beyond the “viewgraph norm”. These functions are examples of the types

of analytics that fit well within the architecture we have proposed in this dissertation.

We discuss six shape characterization metrics:

1. Chord length distribution (individual)

2. Chord length distribution (aggregate)

3. Ray length distribution (individual)

4. Ray length distribution (aggregate)

5. Volume as a function of length scale
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6. Mass as a function of length scale

8.1 Definitions

8.1.1 Chord and Ray Length Distributions

A chord length distribution is a probability distribution over lengths. If a line

intersects a shape Q to form a chord, the chord length distribution for that shape, θC(l)

will tell you the probability that that chord will be a certain length, l.

A ray length distribution is a probability distribution over all rays inside a shape

Q. If you place a random ray (emmanating from a random point in Q, and going a random

direction), then the ray length distribution for that shape, θR(l), will tell you the probability

that that ray will go a certain length before exiting the shape.

Non-convex shapes create an ambiguity in the definitions above. The intersection

between a line and a shape can form multiple, disconnected segments. There are two options

for analyzing the resulting segments:

• The segments can be considered together, that is the length is the sum of the lengths

of each segment

• The segments can be considered separately, that is each segment independently con-

tributes to the probability distribution.

The first variant is referred to as aggregate, while the second variant is referred to

as individual.

Finally, these distributions accept weights, which are typically the density. With

weights, the probability distributions are not over lengths, but actually over “weighted

length”, which can be referred to as “mass” or “linear mass”.

The aggregate version of the chord length distribution has been well studied [57,

47, 49, 48]. [57] also contains results related to the individual version of the chord length

distribution.
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8.1.2 Volume and Mass as a Function of Length Scale

It is clear that determining how much mass (or volume) is at a given length scale is

a pertinent metric. However, in two- and three-dimensional space, length scale is somewhat

ambiguous. So defining this metric requires defining what it means to be at a given length

scale. Here are some possible definitions:

1. A single length for an object,

2. A field varying over the object, where each point has its own length,

3. A field varying over the object and over angle, where each (point, angle) pair has a

length.

Option #1 is probably incorrect, since there may be great deviation in the object.

By grouping the entire object into just one length scale, there is a loss of information.

Option #2 is not well-defined. For a given point in the object, what should the

length be? Should it be the length of the minimum chord that goes through it? The

maximum chord? The average of all chords? All the aforementioned definitions can skew

results. Consider figure 8.1. Using the minimum chord that goes through a point would give

short length scales to the upper corners and short valleys of the cyan object, even though

intuition would say they are at longer length scales. Alternatively, using the maximum

chord that goes through point P would yield a large length scale, again where intuition

would say that the length scales for the points in the jut that contains P should all be

small. Finally, the average of all chords is also a poor choice. If you average all chord

lengths surrounding P, the resulting length, L0, is not even a possible chord length for P.

Restated, there does not exist an angle α such that the chord through P at angle α has

length L0. So it is difficult to choose a single length scale for a point and have it meet our

intuition.

Option #3, on the other hand, is well-defined. For a given point and a given angle,

the length is simply the length of the chord through the object. (Note that, technically,

the point and angle define a line, and the intersection of that line will result in one or more

chords. In this case, the length is the length of the single chord that contains P.) Note
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Figure 8.1: Choosing a single value as the length scale for P is difficult. The length could
be as small as the short, horizontal segment, or as long as the long, vertical segment.

that this approach (having many length scales stemming from a single point), mirrors the

interpretation of individual chord length distributions.

Assuming the definition of length scale above (option #3), we can then define

formulas for:

1. Volume below some scale α,

2. Mass below some scale α,

3. Distribution of volume by scale,

4. Distribution of mass by scale.

Note that these quantities are highly related. If we can calculate the distribution

of mass by scale, we can calculate the distribution of volume by scale by using a uniform

density. Similarly, if we have a distribution of mass by scale, we can use that distribution

to directly calculate the total mass below some scale α. However, for ease of presentation,

we present the simplest metrics first and then build up. We start with a definition for how

much volume is at a scale below some α. We then create a similart definition for mass by

adding a density function. Finally, we give definitions of volume and mass as distributions.

First, however, we will define utility functions that help with our definitions. These

definitions suggest seemingly computationally expensive solutions. In section 8.2 and later

in appendix B, we will show how a probabilistic, line scan-based approach will produce a

result that converges to these definitions.
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Throughout our definitions, we will refer to an angle as ω. In two dimensions, this

refers to some angle θ. In three dimensions, this refers to a pair of angles, (θ, φ). Further,

integrating a function, f , over ω, (i.e. (
∫

f(ω)dω) has different definitions for two and three

dimensions. For two dimensions, this means
∫ 2π
0 f(θ)dθ, while for three dimensions this

means
∫ 2π
0

∫ π
0 f(θ, φ) × sin(φ)dφdθ.

Utility Functions

We define the function LENGTH(P, ω) as the function that returns the length of

the segment created by intersecting the object with a line going through point P at angle ω.

As noted in the introduction, the intersection can create multiple, disconnected segments.

We choose the length of the single segment that contains P for our definition. If P is not

contained in the shape Q, then LENGTH(P, ω) returns 0.

We define the binary function Sle(P, ω, α) as:

Sle(P, ω, α) =















1 PεQ and LENGTH(P, ω) ≤ α

0 otherwise

(8.1)

We also define a cumulative distribution function, CP (l) over a point P. Consider

a random line L that intersects point P at angle ω. Then let CP (α) be the probability that

LENGTH(P, ω) is ≤ α. Then note that:
∫

Sle(P, ω, α)dω
∫

1dω
= CP (α) (8.2)

The left hand side of the equation is the proportion of angles that have LENGTH(P, ω)

less than α, which is the same as CP (α).

Volume Below α

Our first goal is to determine how much of the volume is at length scales ≤ α.

This will be determined by integrating over all points P inside a shape Q. For each point,

we must determine how many of the angles have chords that are at or below length α.

Then the formulation for Vle(α), the volume with length scale at or below α is:

Vle(α) =

∫

Q

∫

Sle(P, ω, α)dω
∫

1dω
dV (8.3)
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Substituting in equation 8.2 gives the final formula:

Vle(α) =

∫

Q
CP (α)dV (8.4)

Mass Below α

The mass from length scales at or below α, Mle(α), can be calculated by adding

the density function, ρ(P ). Then:

Mle(α) =

∫

Q
ρ(P )

∫

Sle(P, ω, α)dω
∫

1dω
dV (8.5)

Again substituting using equation 8.2 gives:

Mle(α) =

∫

Q
ρ(P )CP (α)dV (8.6)

More Utility Functions

We now define additional utility functions that allow us to define mass and volume

as a distribution over length scale.

Consider a random line L that intersects point P at angle ω. Then let DP (α, ∆)

be the probability that α ≤ LENGTH(P, ω) ≤ α + ∆.

We define a new utility function, Seq(P, ω, α, ∆), for calculating distributions of

volume and mass:

Seq(P, ω, α, ∆) =















1 PεQ and α ≤ LENGTH(P, ω) ≤ α + ∆

0 otherwise

(8.7)

Consider the integration of Seq(P, ω, α, ∆) over all angles for some P and some α.

Then:
∫

Seq(P, ω, α, ∆)dω
∫

1dω
= DP (α, ∆) (8.8)

since the left-hand side of the equation is the proportion of angles that are at distances

between α and α + ∆ from a boundary for point P, which is the same as DP (α, ∆).
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Distribution Of Volume By Scale

Our goal is to construct a function Veq(α, ∆), where, for each α0, Veq(α0, ∆) is the

amount of volume at length scales between α0 and α0 + ∆. One possible way to construct

this function is to evaluate Vle(α0 + ∆) − Vle(α0). Alternatively, this can be constructed

directly as:

Veq(α, ∆) =

∫

Q

∫

Seq(P, ω, α, ∆)dω
∫

1dω
dV (8.9)

Substituting using equation 8.8 gives:

Veq(α, ∆) =

∫

Q
DP (α, ∆)dV (8.10)

Distribution of Mass By Scale

Again, the mass can be calculated by adding a density function, ρ(P ):

Meq(α, ∆) =

∫

Q
ρ(P )

∫

Seq(P, ω, α, ∆)dω
∫

1dω
dV (8.11)

Again, substituting using equation 8.8 gives:

Meq(α, ∆) =

∫

Q
ρ(P )DP (α, ∆)dV (8.12)

8.2 Implementation

All of the metrics can be calculated using a line scan approach. Each follows the

same high level approach:

1. Construct a set of uniform density random lines

2. Calculate the intersection of these lines with the shape

3. Perform analysis on the resulting intersections

The only portion specific to each metric is step #3. Steps #1 and #2 are shared

by all of the metrics.

Of course, parallelization aspects complicate this procedure. Here is an overview

of the parallel approach:
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1. Construct a set of uniform density, random lines. Each processor uses the exact same

set of lines, regardless of which portion of the larger data set it operates on. (The

technique for generating the lines will be discussed later in this chapter.)

2. Calculate the intersection of these lines with the shape. Each processor will only

calculate the intersection with the portion of the data set it owns.

3. Re-distribute the segments. The random, uniform density lines will be partitioned

among the processors. The intersections are communicated among the processors so

that processor 0 contains all segments for the first N lines, processor 1 the segments

for the next N lines, and so on. After redistribution has occurred, connected segments

are identified and merged.

4. Perform analysis on the resulting intersections. Each processor will perform the anal-

ysis only on the lines it owns.

5. Collect results. All of the analyses are collected to processor 0, which merges them

into a single result. The merge step is dependent on the analysis metric.

Figure 8.2 shows a diagram of this process. Finally, we should note that to get good con-

vergence, millions of lines or more may be necessary. Because storing the intersections from

this number of lines may exceed available memory, an iterative approach is taken where

steps #1-#5 are performed repeatedly with tractable numbers of lines.

8.2.1 Constructing Uniform Density, Random Lines

Since we employ a probabilistic approach to evaluating these metrics, it is ex-

tremely important that the we do not choose lines that create bias. To do this, we choose

a construction of lines that are random and uniform in density.

It is subtlely hard to generate a set of lines that meet this criteria. We used known

techniques presented by Mazzolo and Roesslinger [47] for two dimensions and Sbert [65] for

three dimensions. For axially-symmetric two-dimensional simulations, we used the three-
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Figure 8.2: A diagram of data ownership for line scan-based analysis. Note that the data
flow network has two filters at the beginning of the pipeline that are meant to be repre-
sentative of filters that perform some data manipulation before the line scan-based analysis
occurs. An example would be a filter that removes materials, leaving only one material
in its place. This sort of interoperability between filters is a key advantage to deploying
analysis techniques like line scan filters inside a greater, interoperable infrastructure.

dimensional lines and then considered their intersection with the axially-symmetric mesh

when it is revolved into three dimensions (i.e. the Sbert construction was used).

The two dimensional construction circumscribes a circle around the objects. It

starts by generating random, directed lines for a unit circle. We will need to consider

directed lines so that, for a given point, we can generate the line at angle θ and also generate

the line for angle θ + π. Although these lines are essentially identical, we need to generate

both directions so that we will be able to later correlate the lines to our definitions (which

consider the angles θ and θ + π separately). The directed lines are then scaled by the

radius of the circumscribing circle and translated with respect to its origin. To construct

random directed lines for the unit circle, random values of p (distance to the origin) and

θ (the angle between the line and the X-Axis) are selected. p is drawn uniformly from [-1,

1] and θ is drawn uniformly from [0, 2π). A segment is then constructed using p and θ.
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One endpoint of the segment is the origin. The other endpoint, E, is distance p from the

origin at angle θ. The random line is then the line perpendicular to this segment, passing

through E. The line’s equation is: x × cos(θ) + y × sin(θ) = p. The negative distances

for p allow us to represent the line as originating from either direction. The direction is

captured by retaining the θ parameter (the line is considered to be moving in the direction

of (sin(θ),−cos(θ))1).

The three dimensional construction similarly circumscribes the object within a

sphere. First, one point, P0, on the surface of the sphere is chosen randomly. The point

depends on the random selection of z from the interval (−1, 1)2 and on the random selection

of a θ from the interval [0, 2π). Then P0 is (cos(θ) ×
√

1 − z2, sin(θ) ×
√

1 − z2, z). The

normal vector, N , is the direction from the origin of the sphere to P0, which is also (cos(θ)×
√

1 − z2, sin(θ)×
√

1 − z2, z). A plane is constructed. The plane’s origin is the origin of the

sphere and its normal is N . The sphere is sliced by this plane to form a disc. From this disc,

a random point is chosen. This is done by choosing two points, P1 and P2, and treating

them as coordinates inside the disc. If (P1, P2) falls outside the disc, new P1 and P2 are

chosen. The random directed line is then the line going in the direction of the normal vector

and intersecting the disc at the point generated by (P1, P2). More detail of this process is

located in Appendix A.

Figure 8.3: Random, uniform density lines within the unit circle. On the left, 125 lines, the
middle, 250, and the right, 500.

1The direction of the line is not (cos(θ), sin(θ)), since the direction of the line is perpendicular to the
angle θ. So the direction is (cos(θ −

π
2
), sin(θ −

π
2
). (cos(θ −

π
2
) = sin(θ) and sin(θ −

π
2
) = −cos(θ).)

2We choose from the open interval (as opposed to [−1, 1]), because of complexities discussed in Appendix
A. Note that this choice precludes the points (0, 0,−1) and (0, 0, 1) from being selected.
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8.2.2 Calculating Intersections

The difficult portion of line intersections is efficiently determining which elements

of the mesh intersect with each of the lines. We do this by storing the bounding boxes of

the elements in an interval tree [23]. For each line, the interval tree will return the elements

whose bounding box intersects it. This approach can generate “false positive” elements,

which have intersecting bounding boxes, but do not actually intersect the line. Empirically,

their effect on running time is minimal.

A special case is for 2D axially-symmetric (i.e.“RZ”) meshes. These meshes should

be treated as 3D meshes, through a revolution around the Z-Axis. However, truly promoting

them into 3D by doing a revolution can create meshes bigger than can be held in primary

memory. So our element identification routines and line intersections were modified so that

the mesh could remain in 2D. In this case, the interval tree was modified to take a three

dimensional line and operate on a two dimensional mesh. The elements of the mesh are

grouped by spatial location. Each query to find the elements that intersect a line starts by

taking the top level of the tree, revolving its bounding box into a hollow cylinder and asking

if it can intersect the line. The tree is traversed using this test until the elements that can

intersect are found. Once the correct elements are found, each of their edges are revolved to

form truncated cones (or potentially cylindrical shells) and the intersection with the cone

is determined. This intersection is then added to the line in the normal manner and the

resulting grouping of line segments are in three dimensions (as opposed to projecting the

three dimensional lines back to two dimensional curves).

We did consider taking two dimensional lines and weighting the lines so that the

segment is adaptively weighted so that portions with high “R” values contribute more.

But the resulting lines are no longer uniform density and random, so there is no reason

to think that the resulting calculations will converge to the correct answer. An alternative

approach would have been to cast curves on the plane. These curves would be the projection

of the three dimensional line. But locating elements that intersect with curves and then

calculating their intersections is also difficult and the approach taken was considered more

straight forward.
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8.2.3 Performing Analysis on the Resulting Intersections

Some of the considered metrics do their analysis on directed lines, while others

do their analysis on rays (see table 8.2.3). For now, we will defer the construction of how

to construct rays from directed lines, and instead focus on how the analysis is done given

a set of lines or a set of rays. For the chord and ray length distributions, the probability

distribution is discretized into bins to form a histogram. Every time a chord or ray is found,

the bin for the corresponding length is incremented. Details of the length calculation depend

on which variation of segment counting is used.

Table 8.1: A table of metrics and the primitive types (lines or rays) that they operate on.

Metric Primitive

Chord length distribution (individual) Lines

Chord length distribution (aggregate) Lines

Ray length distribution (individual) Rays

Ray length distribution (aggregate) Rays

Volume as a function of length scale Lines

Mass as a function of length scale Lines

Now let us return to the topic of constructing random, uniform density rays from

random, uniform density directed lines. There multiple ways to do this:

1. Find a random point along the line, going in the direction of the line.

2. Find multiple random points along the line, going in the direction of the line.

3. Consider all rays contained by the directed line.

Option #3 is the best option in this setting, because each line will contribute many

data points to our probability distribution. Option #1, on the other hand, will possibly

contribute no information for a given line, because the random point may not even lie inside

the shape. Further, even if the randomly selected origin for the ray does lies in the shape,

only a single data point will be inferred for our probability distribution.

Of course, care must be taken when considering all rays along a given directed line.

There are an infinite number of rays. So we must consider what happens when we consider

only rays spaced some ε apart and then consider what happens when ε approaches 0. Since
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we have already decided to calculate our functions in a discretized form (i.e. a histogram),

we can consider how many rays fall within a given bin. This will be the width of the bin

divided by ε. However, since we are ultimately using these counts to form a distribution,

the ε will cancel out and we can do our counting using lengths, rather numbers of rays

(since there are an infinite number). For example, if our ray length distribution had 100

bins, each with width 3., and we encounter a line of length 57.3, we should update the first

19 bins with 3.
ε . The 1.

ε term will ultimately cancel, so we can update the bin with simply

a distance: 6. The 20th bin should be updated with 0.3.

Although this construction is considerably more complicated, we will see in the

verification section that it causes convergence to occur much more quickly.

The analysis done to calculate the mass as a function of length scale is quite

involved and is discussed further in appendix B. Appendix B also contains the proof that

a line scan-based technique will ultimately converge to the same solution.

8.3 Verification

All of the metrics we implemented leveraged the same line scan infrastructure.

Since the metrics are not aware of the underlying shapes, applying the metrics to well

known shapes, such as spheres and circles, is a sufficient way to test that infrastructure. In

addition, analytic answers for these shapes are well known, which allows us to verify the

answers the metrics produce. In this section we will test the metrics against a sphere.

8.3.1 Test Data

The sphere itself was created by taking a rectilinear grid and clipping it to create

a sphere of radius 1. The zones on the interior of the grid were then “voxels” (hexahedrons

with axis-aligned faces), while the zones on the sphere’s boundary were tetrahedra created

by subdividing these voxels. The total number of zones was 36,000. Although some of the

metrics do weighting based on density, a uniform density was used to ease comparisons with

analytic results.
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Figure 8.4: The sphere is rendered by itself on the left and mesh lines are added on the
right. There are 36,000 total zones in the sphere.

8.3.2 Chord Length Distribution

Olson, Miller, et al, calculated the analytic solution for the chord length distribu-

tion of a sphere of radius R in [57]. The distribution is:

θC(l) =















0 l > 2R

l
2R2 l ≤ 2R

(8.13)

Of course, our approach to calculate the chord length distribution was to cast some

number, L, of uniform density, random lines and to calculate the probability distribution

over those lines, θC,L(l). We then studied the resulting distributions with 10,000, 100,000,

and 1,000,000 lines. For each amount of lines, we used the following metrics to measure

closeness of fit for θC,L(l) with θC(l):

• The L2-norm,
∫ 2R
0 (θC,L(l) − θC(l))2dl

• The difference in average chord length,
∫ 2R
0 l ∗ θC,L(l)dl −

∫ 2R
0 l ∗ θC(l)dl

For each run, we used 250 bins. Table 8.2 and figures 8.5, 8.6, and 8.7 contain the

results. As more lines were cast, the two metrics above give better answers. It is also worth

noting that convergence is dependent on bin-size. Obviously, wide bin sizes converge much

more quickly that narrow bin sizes. Further, when using a fixed bin size, the result cannot

ever exactly equal the analytic solution, because the histogram produced only approximates

the curve given by the analytic solution.
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Table 8.2: Summarizing convergence for different numbers of lines for the chord length
distribution.

Analytic 10K 100K 1M

L2-norm 0 0.1715 0.0472 0.0326

Avg chord length 1.3323 1.3188 1.3305 1.3318

Diff in avg chord length 0 0.0135 0.0018 0.0005

Time to calculate NA 18 sec 3 minutes 25 minutes

Figure 8.5: Plotting the distribution produced by casting 10,000 lines (blue) versus the
analytic solution (black).

8.3.3 Ray Length Distribution

For the ray length distribution, we again did a comparison between the analytic

and calculated results. This time we only used 1,000, 10,000, and 100,000 lines, since

convergence was considerably better. We used the same metrics to compare the results:

•
∫ 2R
0 l ∗ θR,L(l)dl −

∫ 2R
0 l ∗ θR(l)dl

•
∫ 2R
0 (θR,L(l) − θR(l))2dl

Again, for each run, we used 250 bins and saw good convergence to the analytic

solution. Table 8.3 and figures 8.8, 8.9, and 8.10 contain the results.

8.3.4 Demonstration

We will now study the information given by our metrics for a grain-like media, as

shown in figure 8.11A. In the rest of figure 8.11, we show the outputs of each metric on
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Figure 8.6: Plotting the distribution produced by casting 100,000 lines (green) versus the
analytic solution (black).

Figure 8.7: Plotting the distribution produced by casting 1,000,000 lines (red) versus the
analytic solution (black).

these shapes. The aggregate chord length distribution (B) gives a probability (over lengths)

of how much media is traversed when starting from outside the shape and moving through

the entire shape. The individual chord length distribution (C) gives the probability of the

length of a randomly selected chord. The mass distribution (D) shows how much mass is

at each length scale. Since the media had uniform density, the mass distribution is equal

to the volume distribution in this case. The aggregate ray length distribution (E) gives the

probability of how much media a particle traverses to exit the entire shape, provided that

the particle was randomly placed and going a random direction. The individual ray length

distribution (F) gives the probability of how much media a particle traverses to exit the
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Table 8.3: Summarizing convergence for different numbers of lines for the ray length
distribution.

Analytic 1K 10K 100K

L2-norm 0 0.0120 0.0033 0.0017

Avg chord length 0.75 0.7497 0.75009 0.7490

Diff in avg chord length 0 0.00133 0.00009 0.0010

Time to calculate NA 3 sec 22 sec 3 minutes

Figure 8.8: Plotting the ray length distribution produced by casting 1,000 lines (blue) versus
the analytic solution (black).

portion of the shape that it initially lies in, again provided that the particle was randomly

placed and going a random direction.
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Figure 8.9: Plotting the ray length distribution produced by casting 10,000 lines (green)
versus the analytic solution (black).

Figure 8.10: Plotting the ray length distribution produced by casting 100,000 lines (red)
versus the analytic solution (black).
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Figure 8.11: The shape characterization metrics were applied to the shape shown in A. The
aggregate chord length distribution is plotted in B. The individual chord length distribution
is plotted in C. The mass distribution is plotted in D. The aggregate ray length distribution
is plotted in E. The individual ray length distribution is plotted in F.
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Appendix A

A Mapping Function Between Line

Scans and Volumes

In this chapter, we will establish a mapping function between the random, uniform

density directed lines from chapter 8 and the definitions also from that chapter. Specifically,

we will prove properties of this mapping function that will be used in Appendix B for

translating analysis on these lines to the definitions (which are in a point-angle space).

For ease of reference, let’s name the two sets that we are considering. The first

set, Lines, is over all points on all directed line segments contained inside a unit circle or

unit sphere. Elements of this set are a tuple. An example from this set would be (m, t),

where m is a directed line and t is a distance along that line. The second set, PointAngle,

was previously represented in the definitions from Chapter 8 as “dωdV ”. An element from

PointAngle in two dimensions is of the form (x, y, θ). In three dimensions, it is of the form

(x, y, z, θ, φ). For a tuple to be in PointAngle, its spatial coordinates must be within the

unit circle or unit sphere and its angle (or angles) must be constrained so that no point

and angle pairing can be multiply represented (i.e. θ must be from the interval [0, 2π) and

φ must be from the interval [0, π]). All of the derivations in this chapter assume the sets

Lines and PointAngle are over the unit circle or unit sphere. If a shape is considered that

is outside this region, the region can be scaled and shifted appropriately.

Again, our ultimate goal is to show that analyses done on the set Lines are ap-
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plicable to the set PointAngle. The bulk of this chapter will be establishing a mapping

function, F , that will help establish this. We will consider the cases of two dimensional

directed lines and three dimensional directed lines separately. For each dimension, we will

derive:

• the definition of F

• whether or not F is a one-to-one correspondence, and

• the Jacobian of F .

A.1 Relating results in Lines to PointAngle

In [73], a theorem is established that links evaluations from one set with evaluations

on another. If F is a one-to-one mapping function from set B onto set A, and if h is a

function defined on A, then:

∫

A
h(a)dA =

∫

B
h(F (b)) × JF (b)dB (A.1)

where JF (b) is the determinant of the Jacobian of F at point b.

In appendix B, we will use this theorem to construct a relationship between our

sets Lines and PointAngle. PointAngle will be set A and Lines will be set B. F will be

the mapping function established in the following sections.

For three dimensions, the mapping function F will not form a one-to-one corre-

spondence. Part of the three dimensional construction of random directed lines involves

choosing a point on the surface of the sphere. The construction chooses a random z and

a random θ. If z is −1 or 1, then, for this construction, any choice of θ will yield the

same point (making the function not one-to-one). For this reason, we only draw z from

the open interval (−1, 1). Hence, the integration on the right hand side of A.1 will exclude

the boundary of the set Lines. Similarly, the image of F will be over an open subset of

PointAngle, where the angles φ equal to 0 and π are not represented. Later, in appendix

B we will show that the integrand in the excluded region is finite. Then, since the bound-

ary of Lines and its image in PointAngle are submanifolds of lower dimensions (and the
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integrand is finite), the excluded regions do not contribute to the integral and theorem A.1

will still be applicable.

A.2 Two dimensional directed lines

The two dimensional directed line segment construction calls for choosing a p

randomly from the interval [−1, 1] and a θL randomly from the interval [0, 2 × π)1. For a

given (p, θL) pair, the first step is to construct the line:

x × cos(θL) + y × sin(θL) = p (A.2)

and then retain θL to prescribe the direction. Intersecting this directed line with the unit

circle creates a direted line segment. It is this segment that is a member of Lines2D.

A.2.1 The mapping function F

Consider the function F that maps elements from Lines2D to PointAngle2D.

Previously, we denoted a directed line as m. Since the construction of the directed line

m is dependent on the parameters p and θL, we will include both parameters, p and θL,

in the place of m. That is, instead of considering F (m, t) → (x, y, θPA), we will consider

F (p, θL, t) → (x, y, θPA).

We will now derive x, y, and θPA from p, θL, and t. First, we will determine the

endpoints of the line segment formed by the (p, θL) construction from A.2. Re-arranging

the equation to solve for x gives:

x =
p − y × sin(θL)

cos(θL)
(A.3)

We also know that the endpoints will lie on the unit circle, so:

x2 + y2 = 1 (A.4)

Substituting A.3 into A.4 gives:

p2 − 2py × sin(θL) + y2 × sin(θL)

cos2(θL)
+ y2 = 1 (A.5)

1The subscript “L” for θL is a mnemonic for the set “Lines”. Subsequently, we will also discuss the
related angle θPA, which is the θ parameter for set “PointAngle”.
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Rearranging and using the identity sin2(θL) + cos2(θL) = 1 gives:

y2 − 2p × sin(θL) + (p2 − cos2(θL)) = 0 (A.6)

And we can use the quadratic formula to obtain the roots for y:

y1 = p × sin(θL) + cos(θL) ×
√

1 − p2 (A.7)

y2 = p × sin(θL) − cos(θL) ×
√

1 − p2 (A.8)

Finally, we can solve for x1 and x2 by substituting A.7 and A.8 into A.3, to get:

x1 = p × cos(θL) − sin(θL) ×
√

1 − p2 (A.9)

x2 = p × cos(θL) + sin(θL) ×
√

1 − p2 (A.10)

Note that (x1, y1) can be thought of as the first point from the unit circle that the directed

line will hit and (x2, y2) can be thought of the last point from the unit circle it will hit.

We will now construct the mapping F (P, θL, t) → (x, y, θPA). We would like to

determine the form of the following:

x = Fx(P, θL, t) (A.11)

y = Fy(P, θL, t) (A.12)

θPA = FθPA
(P, θL, t) (A.13)

Using the construction for a random p and θL, the directed line segment originates

at (x1, y1) and terminates at (x2, y2). Consider a point on this segment. It starts at (x1, y1)

and goes some distance along the vector (x2 − x1, y2 − y1). Call the unit vector along this

orientation (xd, yd). Then we know that:

x = x1 + t × xd (A.14)

y = y1 + t × yd (A.15)

The unit vector, (xd, yd), can be calculated by dividing (x2 − x1, y2 − y1) by its magnitude.

This magnitude is calculated as follows. A right triangle is formed by the perpendicular line

and the segment of length p that originates from the origin (see figure A.1). The hypotenuse
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is 1, so the third side, using the Pythagorean Theorem, is
√

1 − p2. This third side accounts

for half the length of the chord (x2 − x1, y2 − y1), so its total length is 2
√

1 − p2. Then

(xd, yd) is:

xd =
x2 − x1

2
√

1 − p2
=

2 × sin(θL) ×
√

1 − p2

2
√

1 − p2
= sin(θL) (A.16)

yd =
y2 − y1

2
√

1 − p2
=

−2 × cos(θL) ×
√

1 − p2

2
√

1 − p2
= −cos(θL) (A.17)

Figure A.1: Establishing the length of the chord.

We can now get an explicit formula for x and y by substituting A.16 and A.17

into A.14 and A.15:

x = p × cos(θL) − sin(θL) ×
√

1 − p2 + t × sin(θL) (A.18)

y = p × sin(θL) − cos(θL) ×
√

1 − p2 − t × cos(θL) (A.19)

Consider the relationship between θL and θPA. The directed line formed in the

construction is perpendicular to θL, so it is at a rotation of −π
2 . So:

θPA =















θL − π
2 θL > π

2

θL + 3π
2 otherwise

(A.20)

Although we have given the equations for the mapping F , we have not yet shown

that it is a mapping from Lines2D to PointAngle2D, because we have not shown that all



136

elements from Lines2D only map to elements in PointAngle2D. (Restated, there might exist

an element of Lines2D that is mapped to a tuple that is not an element of PointAngle2D.)

Assume, then, that there exists an element, E, from Lines2D that F maps to an element,

E, that is not in PointAngle2D. There are two ways that E can violate the requirements

for membership in PointAngle2D. First, E’s θPA could be outside the interval [0, 2π).

Second, the point (x, y) could lie outside the unit circle. The first case is not possible, since

E’s θL is always within the approved interval and the transformation will not change θPA

to be outside it. So our element E must lie outside the unit circle. But for E to be in

Lines2D, the location t on E’s line must be in the unit circle. And our map goes to the

same point in PointAngle2D. So the mapping of E is in the unit circle. So we have reached

a contradiction and we know that F is indeed a mapping from Lines2D to PointAngle2D.

A.2.2 F forms a one-to-one correspondence

We will now demonstrate that F forms a one-to-one correspondence between

Lines2D and PointAngle2D. To show that it is a one-to-one correspondence, we must

show that it is one-to-one and that it is onto.

To see that F is one-to-one, assume that F (p1, θL1, t1) is equal to F (p2, θL2, t2).

We can give their common image a name, (x, y, θPA). Consider the following:

• The relationship between θL and θPA (equation A.20) shows that θL1 must be equal

to θL2.

• For a fixed θL, two distinct p’s map to two disjoint chords on the circle. If the p’s

were different, but their image was at the same (x, y), then these disjoint chords must

intersect. This can’t happen, so the p’s must also be equal.

• For a fixed p and θL, we can establish the point (x1, y1) and direction (xd, yd). t

corresponds to the magnitude of offset of the point by the direction. The only way

that that magnitude can vary and still end up at a common (x, y) is if the direction

is the zero vector. This is not the case, so the t’s must be equal.

So we have established that (p1, θL1, t1) = (p2, θL2, t2), so the mapping must be one-to-one.
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To see that F is onto, consider an element of PointAngle2D, (x0, y0, θPA0). We

will show that there exists a (p0, θL0, t0) that F maps to (x0, y0, θPA0). Again using equation

A.20, we can immediately calculate θL0. Note that θL0 will be in the range [0, 2π). Further,

we can calculate p0 directly by subtituting values for θL0, x0, and y0 into A.2:

p0 = x0 × sin(θL0) + y0 × cos(θL0) (A.21)

To see that p0 comes from the range [−1, 1], we can use the following geometric identity:

x0 × sin(θL0) + y0 × cos(θL0) =
√

x2
0 + y2

0 × sin(θL0 + β) (A.22)

where:

β =















arctan(y0/x0) x0 ≥ 0

arctan(y0/x0) ± π x0 < 0

(A.23)

Then
√

x2
0 + y2

0 is less than 1 (since (x0, y0) is contained within the unit circle) and sin(θL0+

β) is bounded between −1 and 1, so their product, p0, must come from the range [−1, 1].

Finally, if sin(θL0) is not 0, then we can solve for t0 directly using equation A.18.

If it is 0, then we can solve for t0 using equation A.19.

Then we have shown that for an arbitrary (x0, y0, θPA0), we can construct a valid

(p0, θL0, t0). Thus, F is onto.

A.2.3 The Jacobian of F

The Jacobian of F is the matrix of partial derivatives of F .

J(F ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x
∂p

∂x
∂θL

∂x
∂t

∂y
∂p

∂y
∂θL

∂y
∂t

∂θPA

∂p
∂θPA

∂θL

∂θPA

∂t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(A.24)

and:

∂x

∂p
= cos(θL) +

p × sin(θL)
√

1 − p2
(A.25)

∂x

∂θL
= (1 −

√

1 − p2) × cos(θL) − p × sin(θL) (A.26)

∂x

∂t
= sin(θL) (A.27)
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∂y

∂p
= sin(θL) − p × cos(θL)

√

1 − p2
(A.28)

∂y

∂θL
= (1 −

√

1 − p2) × sin(θL) + p × cos(θL) (A.29)

∂y

∂t
= −cos(θL) (A.30)

∂θPA

∂p
= 0 (A.31)

∂θPA

∂θL
= 1 (A.32)

∂θPA

∂t
= 0 (A.33)

The determinant of J(F) is 1.

A.3 Three dimensional lines

The three dimensional directed line segment construction calls for first choosing

a random point, P , along the surface of the sphere.
−−→
OP , the ray between the origin (O)

and P , sets the direction of the line. A plane, T , is constructed. T has normal
−−→
OP and

intersects the point O. The intersection of the sphere with the plane is a disc. A random

point, R, is selected from this disc. The final directed line is the line that goes through R

and goes in direction
−−→
OP .

A.3.1 The mapping function F

The total number of random values needed to construct the directed line is four.

Selecting a random point on the surface of a sphere requires two random values and selecting

a point inside the disc (that the line is incident to) requires another two random values.

If P0 is a random value from the range (−1, 1) and θL is a random value from the

range [0, 2π), then a random point along the surface of the sphere can be constructed as:

x = cos(θL) ×
√

1 − P 2
0 (A.34)

y = sin(θL) ×
√

1 − P 2
0 (A.35)

z = P0 (A.36)
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Note that this construction draws P0 from an open interval and not a closed interval. As

noted in section A.1, this will allow the mapping function we consider to be one-to-one

which in turn will allow us to utilize it in theorem A.1.

Then the direction of the normal vector, N , for plane T can be immediately

determined as (x, y, z).

Now consider the disc of intersection between T and the sphere. We will construct

a disc for the plane “Z = 0” and then rotate that plane to be normal to N . We will use

two random values, P1 and P2. Both are drawn uniformly from the interval [−1, 1]. P1 and

P2 get mapped to the point (P1, P2, 0) on the disc. If this point lies outside the disc, then

new values of P1 and P2 are selected.

The plane will be rotated into position by composing two separate rotations. First,

note that the angle φL can be calculated as ArcCos(z). Then, the first rotation will be by

φL around the y-axis. The second will be by θL around the z-axis. The first rotation is:

Ry;φL
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos(φL) 0 −sin(φL)

0 1 0

sin(φL) 0 cos(φL)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(A.37)

The second rotation is:

Rz;θL
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos(θL) sin(θL) 0

−sin(θL) cos(θL) 0

0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(A.38)

The composition of the matrices is:

R =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos(θL) × cos(φL) sin(θL) × cos(φL) −sin(φL)

−sin(θL) cos(θL) 0

cos(θL) × sin(φL) sin(θL) × sin(φL) cos(φL)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(A.39)

And a point P on the disc becomes:

(P1, P2, 0) × R = (x0, y0, z0) (A.40)

where:

x0 = cos(θL) × cos(φL) × P1 − sin(θL) × P2 (A.41)
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y0 = sin(θL) × cos(φL) × P1 + cos(θL) × P2 (A.42)

z0 = −sin(φL) × P1 (A.43)

We are now ready to construct the mapping F (P0, θL, P1, P2, t) → (x, y, z, θPA, φPA).

We have previously introduced the parameters for constructing a random directed line: P0,

θL, P1, and P2. The final parameter, t, is the distance along that line. Note that, unlike the

two dimensional case, t does not represent a distance from one point of the surface of the

sphere to another. Instead, t represents the distance from the point (x0, y0, z0). The only

valid values of t are from the interval [−
√

1 − P 2
1 − P 2

2 , +
√

1 − P 2
1 − P 2

2 ]. They correspond

to the points along the line within the unit sphere.

Again we would like to determine functions of the form:

x = Fx(P0, θL, P1, P2, t) (A.44)

y = Fy(P0, θL, P1, P2, t) (A.45)

z = Fz(P0, θL, P1, P2, t) (A.46)

θPA = FθPA
(P0, θL, P1, P2, t) (A.47)

φPA = FφPA
(P0, θL, P1, P2, t) (A.48)

With equations A.41, A.42, and A.43, we established a point on our random di-

rected line. And with A.34, A.35, A.36, we established the direction of that line. Then Fx,

Fy, and Fz are straight-forward to establish.

Fx(P0, θL, P1, P2, t) = x0 + t × Nx (A.49)

Fy(P0, θL, P1, P2, t) = y0 + t × Ny (A.50)

Fz(P0, θL, P1, P2, t) = z0 + t × Nz (A.51)

FθPA
and FφPA

are trivial. Their directions align with the directed line.

FθPA
(P0, θL, P1, P2, t) = θL (A.52)

FφPA
(P0, θL, P1, P2, t) = φL = ArcCos(P0) (A.53)
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Again, we must argue that F only maps to valid tuples (x, y, z, θPA, φPA) to show

that F is a map from Lines3D to PointAngle3D. Assume F maps (P0, θL, P1, P2, t) to an

invalid (x, y, z, θPA, φPA). From equations A.52 and A.53, we can directly infer the angles

and determine that they are valid. So that means that (x, y, z) must be outside the unit

sphere. The directed line formed by (P0, θL, P1, P2) must intersect the sphere (to form a

chord) due to the nature of its construction. So we must have a value of t that does not lie

on this chord. But t is limited to the portions that are along the chord. So we have reached

a contradiction and we know that F is a valid mapping from Lines3D to PointAngle3D.

A.3.2 F forms a one-to-one correspondence

We will now demonstrate that our mapping F for three dimensional directed lines

forms a one-to-one correspondence between Lines3D and PointAngle3D over the open sub-

sets we are considering.

To see that F is one-to-one, assume that F (P0,1, θL1, P1,1, P2,1, t1) is equal to

F (P0,2, θL2, P1,2, P2,2, t2). For ease of reference name their image (x, y, z, θPA, φPA). Con-

sider the following:

• Equations A.52 and A.53 immediately show that P0,1 = P0,2 and θL1 = θL2.

• For a fixed P0 and θL, each (P1, P2) pair maps to a unique ray2. Since the rays are

parallel, they do not intersect. We know that F maps the two tuples to the same

(x, y, z), so the rays they lie on must intersect. Hence P1,1 = P1,2 and P2,1 = P2,2.

• For the tuples to map to the same location (x, y, z), they must be offset from the same

origin along the normal direction by the same amount. Hence t1 = t2.

So we have established that F (P0,1, θL1, P1,1, P2,1, t1) = F (P0,2, θL2, P1,2, P2,2, t2), so the

mapping must be one-to-one.

To see that F is onto, consider an element of PointAngle, (x, y, z, θPA, φPA). Note

that φPA cannot be 0 or π since we are considering only the open subset. We will show

that there exists a (P0, θL, P1, P2, t), with P0 not equal to −1 or 1, that has this image

2Note that this property is not true if we allow P0 to be −1 or 1, since P0 = −1 always maps to the ray
(0, 0, 0) → (0, 0,−1) and P0 = 1 always maps to the ray (0, 0, 0) → (0, 0, 1) for any choice of θ.
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through F . Again using equations A.52 and A.53, we can immediate calculate P0 and θL.

Since φPA does not equal 0 or π, P0 will be within (−1, 1). Then we can use P0 and θL to

establish the normal direction. Next we start at point (x, y, z) and move along the normal

direction until it hits the the disc created by intersecting the sphere with the plane Q. The

distance we move is t. We know that this process (moving in the direction of the normal)

will ultimately lead to an intersection with the disc, because extruding along the disc in the

direction of the normal will create an infinite cylinder that fully contains the sphere. If the

point were not within this cylinder, it would lie outside the sphere, which would mean that

(x, y, z, θPA, φPA) would not be a valid member of PointAngle3D. Finally, given the point

of intersection with the disc, we can calculate P1 and P2 by multiplying the point with the

inverse of the rotation matrix from A.39. Since we were able to prove the existence of an

element from Lines3D, F is onto.

A.3.3 The Jacobian of F

Again, we will calculate the Jacobian of F , the matrix of its partial derivatives.

J(F ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x
∂P0

∂x
∂θL

∂x
∂P1

∂x
∂P2

∂x
∂t

∂y
∂P0

∂y
∂θL

∂y
∂P1

∂y
∂P2

∂y
∂t

∂z
∂P0

∂z
∂θL

∂z
∂P1

∂z
∂P2

∂z
∂t

∂θPA

∂P0

∂θPA

∂θL

∂θPA

∂P1

∂θPA

∂P2

∂θPA

∂t

∂φPA

∂P0

∂φPA

∂θL

∂φPA

∂P1

∂φPA

∂P2

∂φPA

∂t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(A.54)

and:

∂x

∂P0
= cos(θL) × (P1 −

t × P0
√

1 − P 2
0

) (A.55)

∂x

∂θL
= −P2 × cos(θL) − sin(θL) × (P0 × P1 + t ×

√

1 − P 2
0 ) (A.56)

∂x

∂P1
= P0 × cos(θL) (A.57)

∂x

∂P2
= −sin(θL) (A.58)

∂x

∂t
=

√

1 − P 2
0 × cos(θL) (A.59)

∂y

∂P0
= sin(θL) × (P1 −

t × P0
√

1 − P 2
0

) (A.60)
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∂y

∂θL
= −P2 × sin(θL) + cos(θL) × (P0 × P1 + t ×

√

1 − P 2
0 ) (A.61)

∂y

∂P1
= P0 × sin(θL) (A.62)

∂y

∂P2
= cos(θL) (A.63)

∂y

∂t
=

√

1 − P 2
0 × sin(θL) (A.64)

∂z

∂P0
= t +

P0 × P1
√

1 − P 2
0

(A.65)

∂z

∂θL
= 0 (A.66)

∂z

∂P1
= −

√

1 − P 2
0 (A.67)

∂z

∂P2
= 0 (A.68)

∂z

∂t
= P0 (A.69)

∂θPA

∂P0
= 0 (A.70)

∂θPA

∂θL
= 1 (A.71)

∂θPA

∂P1
= 0 (A.72)

∂θPA

∂P2
= 0 (A.73)

∂θPA

∂t
= 0 (A.74)

∂φPA

∂P0
= − 1

√

1 − P 2
0

(A.75)

∂φPA

∂θL
= 0 (A.76)

∂φPA

∂P1
= 0 (A.77)

∂φPA

∂P2
= 0 (A.78)

∂φPA

∂t
= 0 (A.79)

The determinant of J(F) is 1√
1−P 2

0

. Note that
√

1 − P 2
0 is sin(φPA), so the deter-

minant is 1
sin(φPA) .
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Appendix B

Calculating volume and mass as a

function of length scale

The definitions of mass as a function of length scale from chapter 8 are computa-

tionally expensive; they require examining all points in the volume and all chords through

those points. Our approach for calculating these quantities was instead to cast uniform

density, random directed lines and perform analysis on the resulting intersections. We will

now demonstrate this technique will converge to the calculation of the previously defined

quantities.

B.1 Volume Below α

Consider the effect of casting N uniform density, random directed lines. Each

directed line is intersected with the shape (Q) to produce segments. The lengths of the

segments are then determined. There are two counters, CNT1 and CNT2. CNT1 is the

total length encountered from segments with length below α. CNT2 is the total length

encountered for all segments. Denote the total volume of the object, Q, as VT and denote

the volume at length scale less than α as Vle(α). Then we claim:

Vle(α) = VT × lim
N→∞

CNT1

CNT2
(B.1)

To help prove this, consider a helper function, D(m, α). D(m, α) is the total
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lengths of segments from the directed line m that have length less than or equal to α. So,

if a particular line scan, m0, contains segments of lengths 2, 3, and 5, then D(m0, 2.5) = 2,

while D(m0, 4) = 5 and D(m0, 1) = 0. Similarly, if we wanted to have a function that

counted the lengths of all the segments encountered on m0, we could use D(m0,∞).

Consider the average value of D(m,α)
D(m,∞) , which we will refer to as D(α). This average

can be constructed by considering this ratio for all possible lines that go through the shape

Q. If “dm” is the variable of integration over our random, uniform density directed line

construction and MQ is the set of directed lines that intersect the sphere circumscribing

Q, then:

D(α) =

∫

MQ D(m, α)dm
∫

MQ D(m,∞)dm
(B.2)

Let’s now consider the ratio of CNT1 and CNT2 again. For each directed line m

considered, the contribution to CNT1 is the sum of the lengths of the segments that are

less than α. Our helper function, D(m, α), is counting the exact same thing. Similarly,

the function D(m,∞) is counting the same thing as CNT2. Then the law of large numbers

states that if we consider more and more directed lines, then our ratio will reach the average,

which is D(α):

lim
N→∞

CNT1

CNT2
= D(α) (B.3)

Now let’s consider D(α) in more detail. Our helper function D(m, α) returns

lengths of segments. But the length of a segment is merely an integration along that

segment. We can capture this notion by using a new helper function, Dpoint(m, t, α). t is

the distance along m, so (m, t) corresponds to some point P . Then Dpoint(m, t, α) returns

1 if P is contained by a segment that has length less than or equal to α. Otherwise,

Dpoint(m, t, α) returns 0. (Note that Dpoint(m, t, α) is the Lines equivalent of Sle(P, θ, α)

for the set PointAngle.) So, if “dt” is the variable of integration along a given directed line

m, then:

D(m, α) =

∫

PQm
Dpoint(m, t, α)dt (B.4)

where PQm is the set of points P in the shape Q that lie along the directed line m. Then,
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substituting equation B.4 into equation B.2 gives:

D(α) =

∫

MQ

∫

PQm Dpoint(m, t, α)dtdm
∫

MQ

∫

PQm Dpoint(m, t,∞)dtdm
(B.5)

As discussed in section A.1, a theorem links evaluations from one set with evalu-

ations on another. For our mapping function, F , the sets Lines and PointAngle, and an

arbitrary function h defined on PointAngle:

∫

PointAngle
h(a)dA =

∫

Lines
h(F (b)) × JF (b)dB (B.6)

where JF (b) is the determinant of the Jacobian of F at point b.

The function, h, will will consider is Sle. For two dimensions, h(a) is Sle(P, θ, α).

For three dimensions, h(a) includes the sin(φ) term that prevents biasing. In that case,

h(a) is Sle(P, (θ, φ), α) × sin(φ). Then:

∫

Q

∫ 2π

0
Sle(P, θ, α)dθdV =

∫

MQ

∫

PQm
Sle(F (m, t), α) × JF (m, t)dtdm [2D] (B.7)

∫

Q

∫ 2π

0

∫ π

0
Sle(P, (θ, φ), α) × sin(φ)dφdθdV =

∫

MQ

∫

PQm
Sle(F (m, t), α) × sin(φ) × JF (m, t)dtdm [3D] (B.8)

The φ term in the right hand side of equation B.8 actually corresponds to Fφ(m, t), from

equation A.53, which maps (m, t) to φ in the set PointAngle.

Note that the constructions of Dpoint and Sle and the mapping function F give us

a nice property. Dpoint(m, t, α) is equal to Sle(F (m, t), α) for any m and t. So:

∫

Q

∫ 2π

0
Sle(P, θ, α)dθdV =

∫

MQ

∫

PQm
Dpoint(m, t, α) × JF (m, t)dtdm [2D] (B.9)

∫

Q

∫ 2π

0

∫ π

0
Sle(P, (θ, φ), α) × sin(φ)dφdθdV =

∫

MQ

∫

PQm
Dpoint(m, t, α) × sin(φ) × JF (m, t)dtdm [3D] (B.10)

We showed in Appendix A that the determinant of the Jacobian for the two dimensional

case was 1, so it can be dropped from the equation.

∫

Q

∫ 2π

0
Sle(P, θ, α)dθdV =

∫

MQ

∫

PQm
Dpoint(m, t, α)dtdm [2D] (B.11)
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In three dimensions, we showed that the determinant of the Jacobian was 1
sin(φ) . This

cancels with the sin(φ) from Sle’s three dimensional definition. This gives:

∫

Q

∫ 2π

0

∫ π

0
Sle(P, (θ, φ), α)×sin(φ)dφdθdV =

∫

MQ

∫

PQm
Dpoint(m, t, α)dtdm [3D] (B.12)

Recall that in section A.1, we stated that the integrand over our excluded region is finite.

As Dpoint is always 0 or 1, we can now see that that is true.

We can now unify our two and three dimensional forms and return to the shorthand

where ω represents θ in two dimensions and (θ, φ) in three dimensions:

∫

Q

∫

Sle(P, ω, α)dωdV =

∫

MQ

∫

PQm
Dpoint(m, t, α)dtdm (B.13)

Similarly, for α equal to ∞:

∫

Q

∫

Sle(P, ω,∞)dωdV =

∫

MQ

∫

PQm
Dpoint(m, t,∞)dtdm (B.14)

Further, Sle(P, ω,∞) always returns 1 for any point P in Q, so:

∫

Q

∫

1dωdV =

∫

MQ

∫

PQm
Dpoint(m, t,∞)dtdm (B.15)

Taking the ratio from B.13 and B.15 gives us a form that can be related to B.5:
∫

MQ

∫

PQm Dpoint(m, t, α)dtdm
∫

MQ

∫

PQm Dpoint(m, t,∞)dtdm
=

∫

Q

∫

Sle(P, ω, α)dωdV
∫

Q

∫

1dωdV
(B.16)

Summarizing the results from equations B.2, B.3, B.5, and B.16, we can see the

relationship between the ratio we started with and our definition:

lim
N→∞

CNT1

CNT2
= D(α) =

∫

D(m, α)dm
∫

D(m,∞)dm
=

∫

MQ

∫

PQm Dpoint(m, t, α)dtdm
∫

MQ

∫

PQm Dpoint(m, t,∞)dtdm
=

∫

Q

∫

Sle(P, ω, α)dωdV
∫

Q

∫

1dωdV
(B.17)

We are really only interested in the first and last quantities in this relationship:

lim
N→∞

CNT1

CNT2
=

∫

Q

∫

Sle(P, ω, α)dωdV
∫

Q

∫

1dωdV
(B.18)

Because
∫

1dω is a constant, this constant can be pulled out of the integral in the denomi-

nator, placed in the numerator (as 1
R

1dω
) and then placed inside the numerator’s integral.

lim
N→∞

CNT1

CNT2
=

∫

R

Sle(P,ω,α)dω
R

1dω
dV

∫

1dV
(B.19)
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Substituting in equation 8.2 gives:

lim
N→∞

CNT1

CNT2
=

∫

CP (α)dV
∫

1dV
(B.20)

And using that
∫

1dV is VT gives:

lim
N→∞

CNT1

CNT2
=

∫

CP (α)dV

VT
(B.21)

Cross multiplying (and re-arranging) gives:

∫

CP (α)dV = VT × lim
N→∞

CNT1

CNT2
(B.22)

And using the definition of Vle(α) (equation 8.4) gives the final result:

Vle(α) = VT × lim
N→∞

CNT1

CNT2
(B.23)

B.2 Mass Below α

The mass below α is calculated in a similar way to the volume. The counters,

CNT1 and CNT2 are updated with
∫

ρ(P )dL over the chords. Although this quantity

would appear to create some sort of “linear mass”, the correct interpretation of this is as a

portion of a larger
∫

ρ(P )dV integration with the points chosen for this part of the integral

that coincidentally lie along a line.

Rather than considering D(α), we will now consider Dmass(α):

Dmass(α) =

∫

MQ

∫

PQm ρ(P ) × Dpoint(m, t, α)dtdm
∫

MQ

∫

PQm ρ(P ) × Dpoint(m, t,∞)dtdm
(B.24)

Because CNT1 and CNT2 now consider density weights, Dmass(α) will still mirror these

counters. Then, skipping the redundant portions of the discussion from section B.1, we get:

lim
N→∞

CNT1

CNT2
=

∫

Q

∫

ρ(P ) × Sle(P, ω, α)dωdV
∫

Q

∫

ρ(P )dωdV
(B.25)

Once again pulling out the constant
∫

1dω and placing it in the numerator and then sub-

stituting in the definition of CP (α) gives:

lim
N→∞

CNT1

CNT2
=

∫

Q ρ(P )CP (α)dV
∫

Q ρ(P )dV
(B.26)
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∫

ρ(P )dV is the mass of the object (MT ) and
∫

ρ(P )CP (α)dV is the mass at length scale

below α (Mle(α), from equation 8.6), so we get a similar result:

Mle(α) = MT × lim
N→∞

CNT1

CNT2
(B.27)

B.3 Distribution of Volume By Scale

To calculate the distribution, we make counters CNT (α, ∆). These counters store

the total length of all the chords that have length in the interval [α, α + ∆).

Our goal is calculate the function Veq(α, ∆) from 8.1.2. We will show that if VT is

the total volume, then, as the number of directed lines approaches infinity:

Veq(α, ∆) = VT × CNT (α, ∆)
∞

∑

n=0

CNT (n × ∆, ∆)

(B.28)

Now we will consider a new function, DR(m, α, ∆), which sums the lengths of

segments in the range [α, α+∆). (The ‘R’ is for “Range”.) So, if a particular line scan, m0,

produces segments of lengths 2, 3, and 5, then DR(m0, 2.5, 1) = 3, while DR(m0, 2.5, 0.4) = 0

and DR(m0, 1.5, 2) = 5. Similarly, if we wanted to have a function that counted the lengths

of all the segments on m0, we could use DR(m0, 0,∞).

Consider the average value of DR(m,α,∆)
DR(m,0,∞) , which we will refer to as DR(α, ∆). This

average can be constructed by considering this ratio for all possible directed lines that go

through the shape Q. If “dm” is the variable of integration over our random, uniform

density directed lines, then:

DR(α, ∆) =

∫

MQ DR(m, α, ∆)dm
∫

MQ D(m, 0,∞)dm
(B.29)

where MQ is the set of all random, uniform density directed lines that intersect the sphere

circumscribing Q. Note that this is the same as considering only the lines that actually

intersect Q, since the lines that do not intersect Q, but do intersect its bounding sphere,

only contribute 0’s.

Let’s now consider the ratio of CNT (α, ∆) and
∞

∑

n=0

CNT (n × ∆, ∆). For each

directed line m considered, the contribution to CNT (α, ∆) is the sum of the lengths of
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the segments that are in the range [α, α + ∆). Our helper function DR(m, α, ∆) is again

counting this exact same thing. Similarly, the function D(m, 0,∞) is counting the same

thing as
∞

∑

n=0

CNT (n×∆, ∆). Then the law of large numbers states that if we consider more

and more directed lines, then our ratio will reach the average, which is DR(α, ∆):

lim
N→∞

CNT (α, ∆)
∞

∑

n=0

CNT (n × ∆, ∆)

= DR(α, ∆) (B.30)

Now let’s consider DR(α, ∆) in more detail. Our helper function DR(m, α, ∆)

returns lengths of segments. But the length of a segment is merely an integration along that

segment. We can capture this notion by introducing another helper function, DR,point(m,

t, α, ∆). The new t parameter corresponds to a distance along m. Going this distance

along m yields a point in the shape Q. If the directed line m intersected with Q forms a

segment that contains this point and the length of the segment is between α and α + ∆,

then DR,point(m, t, α, ∆) returns 1. Otherwise it returns 0. (Note that DR,point(m, t, α, ∆)

is the Lines equivalent of Seq(P, ω, α, ∆) for the set PointAngle.) So, if “dt” is the variable

of integration along a given directed line m, then:

DR(m, α, ∆) =

∫

PQm
DR,point(m, t, α, ∆)dt (B.31)

where PQm is the set of points P in the shape Q that lie along m. Then, substituting

equation B.31 into equation B.29 gives:

DR(α, ∆) =

∫ ∫

DR,point(m, t, α, ∆)dtdm
∫ ∫

DR,point(m, t, 0,∞)dtdm
(B.32)

We can again use the theorem relating results over two sets by a magnification of the

Jacobian of their mapping function. Skipping redundant steps from section B.1 (with

DR,point playing the role of Dpoint and Seq playing the role of Sle), we find:

lim
N→∞

CNT (α, ∆)
∞

∑

n=0

CNT (n × ∆, ∆)

=

∫

Q

∫

Seq(P, ω, α, ∆)dωdV
∫

Q

∫

1dωdV
(B.33)

Again, we can remove the constant
∫

1dω from the denominator and place it in the numer-
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ator, to obtain:

lim
N→∞

CNT (α, ∆)
∞

∑

n=0

CNT (n × ∆, ∆)

=

∫

Q

R

Seq(P,ω,α,∆)dω
R

1dω
dV

∫

Q 1dV
(B.34)

And then substitute in the definition of DP (α, ∆) from 8.9 to get:

lim
N→∞

CNT (α, ∆)
∞

∑

n=0

CNT (n × ∆, ∆)

=

∫

Q DP (α, ∆)dV
∫

Q 1dV
(B.35)

Substituting
∫

1dV = VT and cross multiplying gives:

Veq(α, ∆) = VT × lim
N→∞

CNT (α, ∆)
∞

∑

n=0

CNT (n × ∆, ∆)

(B.36)

From a practical sense, we can obtain the volume at length scales [α, α + ∆) by dividing

the counter for those length scales by the sum of the counters at all other length scales and

multiplying by the total volume.

B.4 Distribution of Mass By Scale

This derivation is very similar to the previous three. It incorporates the “mass”

elements from section B.2 and the “distribution” elements from section B.3. It yields the

result:

Meq(α, ∆) = MT × lim
N→∞

CNT (α, ∆)
∞

∑

n=0

CNT (n × ∆, ∆)

(B.37)

where MT is the total mass and CNT (α, ∆) is the counter for how much mass was encoun-

tered at length scale α when casting directed lines.


